{"title":"Comparative analysis: Exergetic and economic assessment of LNG cold energy power generation systems with different cold utilization methods","authors":"","doi":"10.1016/j.tsep.2024.102844","DOIUrl":null,"url":null,"abstract":"<div><p>Harnessing the cold energy inherent in LNG transportation processes can significantly mitigate energy wastage. Employing an innovative incremental analysis methodology, this study scrutinizes six LNG cold energy power generation systems, featuring a newly proposed parallel and cascade combined cycle (PAC) system. A novel approach that setting the minimum pressure within the systems higher than atmospheric levels has been adopted, for the optimal working fluid selection. The net power output (<em>W</em><sub>net</sub>) of the direct expansion (DC) system registers at −129.51 kW, while both the Single-Stage Organic Rankine Cycle (SORC) and Combined Cycle (CC) systems yield <em>W</em><sub>net</sub> of 2868.46 kW and 3081.46 kW with R32 as working fluid. Despite the lower available exergy extraction of the working fluid, the CC system outperforms due to its superior efficiency in converting pressure exergy into power output. Sensitivity analysis suggests the optimal <em>T</em><sub>con</sub> in CC is limited by the normal boiling point temperature (NBPT) of working fluid, while that in SORC remains unrestricted. The maximum <em>W</em><sub>net</sub> of two-stage Parallel Combined Cycle (PCC) and Cascade Combined Cycle (CCC) can reach 3291.65 kW and 4268.78 with the optimal working fluid combinations R32 + propane, and ethane + propane. The reason <em>W</em><sub>net</sub> of CCC outperforms is the cascade utilization of LNG cold exergy enables the working fluid in its second stage obtains significantly 9.49 times higher amount of exergy compared to PCC. Through sensitivity analysis, while <em>T</em><sub>con1</sub> mostly predominates the performance of PCC, both <em>T</em><sub>con1</sub> and <em>T</em><sub>con2</sub> exert substantial influence on CCC. For the three-stage PAC, its <em>W</em><sub>net</sub> can reach the highest 4700.82 kW with ethane + propane + propane. It is because the PAC not only utilizes LNG’s cold exergy in a cascaded manner, but also obtains the exergy from working fluid. According to economic analysis, the PAC system exhibits an advantage with the highest annul total net income (<em>ATNI).</em> And the CC emerges as a cost-effective choice if the irreversible losses and <em>W</em><sub>net</sub> are not considered. According to innovatively explores about the impact of direct expansion and changes in NG outlet pressure on working fluid selection and economic feasibility, it shows the optimal combinations remain the same, and the systems incorporating a direct expansion component with lower NG outlet pressure demonstrate a more economically advantageous solution.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924004621","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Harnessing the cold energy inherent in LNG transportation processes can significantly mitigate energy wastage. Employing an innovative incremental analysis methodology, this study scrutinizes six LNG cold energy power generation systems, featuring a newly proposed parallel and cascade combined cycle (PAC) system. A novel approach that setting the minimum pressure within the systems higher than atmospheric levels has been adopted, for the optimal working fluid selection. The net power output (Wnet) of the direct expansion (DC) system registers at −129.51 kW, while both the Single-Stage Organic Rankine Cycle (SORC) and Combined Cycle (CC) systems yield Wnet of 2868.46 kW and 3081.46 kW with R32 as working fluid. Despite the lower available exergy extraction of the working fluid, the CC system outperforms due to its superior efficiency in converting pressure exergy into power output. Sensitivity analysis suggests the optimal Tcon in CC is limited by the normal boiling point temperature (NBPT) of working fluid, while that in SORC remains unrestricted. The maximum Wnet of two-stage Parallel Combined Cycle (PCC) and Cascade Combined Cycle (CCC) can reach 3291.65 kW and 4268.78 with the optimal working fluid combinations R32 + propane, and ethane + propane. The reason Wnet of CCC outperforms is the cascade utilization of LNG cold exergy enables the working fluid in its second stage obtains significantly 9.49 times higher amount of exergy compared to PCC. Through sensitivity analysis, while Tcon1 mostly predominates the performance of PCC, both Tcon1 and Tcon2 exert substantial influence on CCC. For the three-stage PAC, its Wnet can reach the highest 4700.82 kW with ethane + propane + propane. It is because the PAC not only utilizes LNG’s cold exergy in a cascaded manner, but also obtains the exergy from working fluid. According to economic analysis, the PAC system exhibits an advantage with the highest annul total net income (ATNI). And the CC emerges as a cost-effective choice if the irreversible losses and Wnet are not considered. According to innovatively explores about the impact of direct expansion and changes in NG outlet pressure on working fluid selection and economic feasibility, it shows the optimal combinations remain the same, and the systems incorporating a direct expansion component with lower NG outlet pressure demonstrate a more economically advantageous solution.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.