{"title":"Practically fast finite-time stability of stochastic constrained nonlinear systems with actuator dead zone","authors":"Lifang Qiu , Junsheng Zhao , Zong-Yao Sun","doi":"10.1016/j.cnsns.2024.108293","DOIUrl":null,"url":null,"abstract":"<div><p>This article addresses the challenge of achieving practically fast finite-time stabilization for stochastic constrained nonlinear systems, which are subject to both quantization effects and actuator dead zones. To tackle these issues, adaptive parameterization and partial control strategies are introduced with the aim of efficiently approximating and counteracting nonlinear disturbances. This approach ensures the robust stabilization of the controlled system within a finite time frame, despite the presence of uncertainties. Additionally, a novel barrier function is propose that mitigates the constraints usually imposed by boundary functions, while also leveraging a fuzzy logic system to manage nonlinear terms adeptly. Building on these innovations, we formulate a new theorem dedicated to practically fast finite-time control mechanisms for stochastic nonlinear systems. The efficacy of our theoretical developments is substantiated through an illustrative example involving a current-controlled DC motor system, demonstrating the practical applicability and robustness of the proposed control scheme.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004787","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article addresses the challenge of achieving practically fast finite-time stabilization for stochastic constrained nonlinear systems, which are subject to both quantization effects and actuator dead zones. To tackle these issues, adaptive parameterization and partial control strategies are introduced with the aim of efficiently approximating and counteracting nonlinear disturbances. This approach ensures the robust stabilization of the controlled system within a finite time frame, despite the presence of uncertainties. Additionally, a novel barrier function is propose that mitigates the constraints usually imposed by boundary functions, while also leveraging a fuzzy logic system to manage nonlinear terms adeptly. Building on these innovations, we formulate a new theorem dedicated to practically fast finite-time control mechanisms for stochastic nonlinear systems. The efficacy of our theoretical developments is substantiated through an illustrative example involving a current-controlled DC motor system, demonstrating the practical applicability and robustness of the proposed control scheme.