{"title":"Low-energy thermo-chemical conversion processes of municipal wet waste","authors":"","doi":"10.1016/j.tsep.2024.102852","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrothermal carbonization (HTC) is a low-energy thermochemical process that converts wet biomass into a carbon-rich solid, commonly called hydrochar, for use in a variety of areas, such as soil amendment, biofuels or to produce carbon-based materials. The purpose of this paper is to increase knowledge for the economic valorization of municipal wet waste, considered as a raw material to obtain high value-added products through an HTC process and an additional chemical activation procedure. In the first part of the work, a 4.5-liter batch reactor was designed, built, and used in the HTC experimental campaign by varying the main process parameters, namely reaction time, amount and type of organic waste (e.g. vegetables, fruits, bread, pasta), water concentration, temperature and pressure. In addition, some experiments were conducted by applying the steam explosion technique at the end of the HTC process. The HTC results showed that in biomass with high water content, increasing residence time decreases the hydrochar yield. Considering a dry heterogeneous waste with high carbon content, the yields at the end of the process are much higher. In the second part of this work, the hydrochar samples were treated with a high-temperature activation process based on the use of KOH, obtaining activated carbon. Particularly, the best results were achieved by using high KOH: hydrochar ratios, resulting in high-quality activated carbons with good porosity and a high surface area of 2890 m<sup>2</sup>/g. Finally, an energy analysis was carried out to evaluate how to make the whole process cost-effective.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451904924004700/pdfft?md5=44a0118589f83b11d5c61bca399644e6&pid=1-s2.0-S2451904924004700-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924004700","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrothermal carbonization (HTC) is a low-energy thermochemical process that converts wet biomass into a carbon-rich solid, commonly called hydrochar, for use in a variety of areas, such as soil amendment, biofuels or to produce carbon-based materials. The purpose of this paper is to increase knowledge for the economic valorization of municipal wet waste, considered as a raw material to obtain high value-added products through an HTC process and an additional chemical activation procedure. In the first part of the work, a 4.5-liter batch reactor was designed, built, and used in the HTC experimental campaign by varying the main process parameters, namely reaction time, amount and type of organic waste (e.g. vegetables, fruits, bread, pasta), water concentration, temperature and pressure. In addition, some experiments were conducted by applying the steam explosion technique at the end of the HTC process. The HTC results showed that in biomass with high water content, increasing residence time decreases the hydrochar yield. Considering a dry heterogeneous waste with high carbon content, the yields at the end of the process are much higher. In the second part of this work, the hydrochar samples were treated with a high-temperature activation process based on the use of KOH, obtaining activated carbon. Particularly, the best results were achieved by using high KOH: hydrochar ratios, resulting in high-quality activated carbons with good porosity and a high surface area of 2890 m2/g. Finally, an energy analysis was carried out to evaluate how to make the whole process cost-effective.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.