{"title":"Gravitational waves from more attractive dark binaries","authors":"Yang Bai, Sida Lu and Nicholas Orlofsky","doi":"10.1088/1475-7516/2024/08/057","DOIUrl":null,"url":null,"abstract":"The detection of gravitational waves (GWs) has led to a deeper understanding of binaries of ordinary astrophysical objects, including neutron stars and black holes. In this work, we point out that binary systems may also exist in a dark sector with astrophysical-mass macroscopic dark matter. These “dark binaries”, when coupled to an additional attractive long-range dark force, may generate a stochastic gravitational wave background (SGWB) with a characteristic spectrum different from ordinary binaries. We find that the SGWB from planet-mass dark binaries is detectable by space- and ground-based GW observatories. The contribution to the SGWB today is smaller from binaries that merge before recombination than after, avoiding constraints on extra radiation degrees of freedom while potentially leaving a detectable GW signal at high frequencies up to tens of GHz.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/08/057","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of gravitational waves (GWs) has led to a deeper understanding of binaries of ordinary astrophysical objects, including neutron stars and black holes. In this work, we point out that binary systems may also exist in a dark sector with astrophysical-mass macroscopic dark matter. These “dark binaries”, when coupled to an additional attractive long-range dark force, may generate a stochastic gravitational wave background (SGWB) with a characteristic spectrum different from ordinary binaries. We find that the SGWB from planet-mass dark binaries is detectable by space- and ground-based GW observatories. The contribution to the SGWB today is smaller from binaries that merge before recombination than after, avoiding constraints on extra radiation degrees of freedom while potentially leaving a detectable GW signal at high frequencies up to tens of GHz.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.