{"title":"Bounds on the charge of the graviton using gravitational wave observations","authors":"S. Nair, A. Vijaykumar and S. Sarkar","doi":"10.1088/1475-7516/2024/11/004","DOIUrl":null,"url":null,"abstract":"If the graviton possesses a non-zero charge qg, gravitational waves (GW) originating from astrophysical sources would experience an additional time delay due to intergalactic magnetic fields. This would result in a modification of the phase evolution of the observed GW signal similar to the effect induced by a massive graviton. As a result, we can reinterpret the most recent upper limits on the graviton's mass as constraints on the joint mass-charge parameter space, finding |qg|/e < 3 × 10-34 where e represents the charge of an electron. Additionally, we illustrate that a charged graviton would introduce a constant phase difference in the gravitational waves detected by two spatially separated GW detectors due to the Aharonov-Bohm effect. Using the non-observation of such a phase difference for the GW event GW190814, we establish a mass-independent constraint |qg|/e < 2 × 10-26. To the best of our knowledge, our results constitute the first-ever bounds on the charge of the graviton. We also discuss various caveats involved in our measurements and prospects for strengthening these bounds with future GW observations.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
If the graviton possesses a non-zero charge qg, gravitational waves (GW) originating from astrophysical sources would experience an additional time delay due to intergalactic magnetic fields. This would result in a modification of the phase evolution of the observed GW signal similar to the effect induced by a massive graviton. As a result, we can reinterpret the most recent upper limits on the graviton's mass as constraints on the joint mass-charge parameter space, finding |qg|/e < 3 × 10-34 where e represents the charge of an electron. Additionally, we illustrate that a charged graviton would introduce a constant phase difference in the gravitational waves detected by two spatially separated GW detectors due to the Aharonov-Bohm effect. Using the non-observation of such a phase difference for the GW event GW190814, we establish a mass-independent constraint |qg|/e < 2 × 10-26. To the best of our knowledge, our results constitute the first-ever bounds on the charge of the graviton. We also discuss various caveats involved in our measurements and prospects for strengthening these bounds with future GW observations.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.