Evaluation of Load on Cervical Disc Prosthesis by Imposing Complex Motion: Multiplanar Motion and Combined Rotational-Translational Motion.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-08-22 DOI:10.3390/bioengineering11080857
Hossein Ansaripour, Stephen J Ferguson, Markus Flohr
{"title":"Evaluation of Load on Cervical Disc Prosthesis by Imposing Complex Motion: Multiplanar Motion and Combined Rotational-Translational Motion.","authors":"Hossein Ansaripour, Stephen J Ferguson, Markus Flohr","doi":"10.3390/bioengineering11080857","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: The kinematic characteristics of disc prosthesis undergoing complex motion are not well understood. Therefore, examining complex motion may provide an improved understanding of the post-operative behavior of spinal implants. (2) Methods: The aim of this study was to develop kinematic tests that simulate multiplanar motion and combined rotational-translational motion in a disc prosthesis. In this context, five generic zirconia-toughened alumina (BIOLOX<sup>®</sup><i>delta</i>, CeramTec, Germany) ball and socket samples were tested in a 6 DOF spine simulator under displacement control with an axial compressive force of 100 N in five motion modes: (1) flexion-extension (FE = ± 7.5°), (2) lateral bending (LB = ± 6°), (3) combined FE-LB (4) combined FE and anteroposterior translation (AP = 3 mm), and (5) combined LB and lateral motion (3 mm). For combined rotational-translational motion, two scenarios were analyzed: excessive translational movement after sample rotation (scenario 1) and excessive translational movement during rotation (scenario 2). (3) Results: For combined FE-LB, the resultant forces and moments were higher compared to the unidirectional motion modes. For combined rotational-translational motion (scenario 1), subluxation occurred at FE = 7.5° with an incremental increase in AP translation = 1.49 ± 0.18 mm, and LB = 6° with an incremental increase of lateral translation = 2.22 ± 0.16 mm. At the subluxation point, the incremental increase in AP force and lateral force were 30.4 ± 3.14 N and 40.8 ± 2.56 N in FE and LB, respectively, compared to the forces at the same angles during unidirectional motion. For scenario 2, subluxation occurred at FE = 4.93° with an incremental increase in AP translation = 1.75 mm, and LB = 4.52° with an incremental increase in lateral translation = 1.99 mm. At the subluxation point, the incremental increase in AP force and lateral force were 39.17 N and 38.94 N in FE and LB, respectively, compared to the forces in the same angles during the unidirectional motion. (4) Conclusions: The new test protocols improved the understanding of in vivo-like behavior from in vitro testing. Simultaneous translation-rotation motion was shown to provoke subluxation at lower motion extents. Following further validation of the proposed complex motion testing, these new methods can be applied future development and characterization of spinal motion-preserving implants.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080857","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

(1) Background: The kinematic characteristics of disc prosthesis undergoing complex motion are not well understood. Therefore, examining complex motion may provide an improved understanding of the post-operative behavior of spinal implants. (2) Methods: The aim of this study was to develop kinematic tests that simulate multiplanar motion and combined rotational-translational motion in a disc prosthesis. In this context, five generic zirconia-toughened alumina (BIOLOX®delta, CeramTec, Germany) ball and socket samples were tested in a 6 DOF spine simulator under displacement control with an axial compressive force of 100 N in five motion modes: (1) flexion-extension (FE = ± 7.5°), (2) lateral bending (LB = ± 6°), (3) combined FE-LB (4) combined FE and anteroposterior translation (AP = 3 mm), and (5) combined LB and lateral motion (3 mm). For combined rotational-translational motion, two scenarios were analyzed: excessive translational movement after sample rotation (scenario 1) and excessive translational movement during rotation (scenario 2). (3) Results: For combined FE-LB, the resultant forces and moments were higher compared to the unidirectional motion modes. For combined rotational-translational motion (scenario 1), subluxation occurred at FE = 7.5° with an incremental increase in AP translation = 1.49 ± 0.18 mm, and LB = 6° with an incremental increase of lateral translation = 2.22 ± 0.16 mm. At the subluxation point, the incremental increase in AP force and lateral force were 30.4 ± 3.14 N and 40.8 ± 2.56 N in FE and LB, respectively, compared to the forces at the same angles during unidirectional motion. For scenario 2, subluxation occurred at FE = 4.93° with an incremental increase in AP translation = 1.75 mm, and LB = 4.52° with an incremental increase in lateral translation = 1.99 mm. At the subluxation point, the incremental increase in AP force and lateral force were 39.17 N and 38.94 N in FE and LB, respectively, compared to the forces in the same angles during the unidirectional motion. (4) Conclusions: The new test protocols improved the understanding of in vivo-like behavior from in vitro testing. Simultaneous translation-rotation motion was shown to provoke subluxation at lower motion extents. Following further validation of the proposed complex motion testing, these new methods can be applied future development and characterization of spinal motion-preserving implants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过施加复杂运动评估颈椎椎间盘假体的负荷:多平面运动和旋转-横向联合运动。
(1) 背景:人们对椎间盘假体在复杂运动下的运动学特征了解不多。因此,对复杂运动进行研究可以更好地了解脊柱植入物的术后行为。(2) 方法:本研究的目的是开发模拟椎间盘假体多平面运动和旋转-横向联合运动的运动学测试。在此背景下,在 6 DOF 脊柱模拟器中对五个通用氧化锆增韧氧化铝(BIOLOX®delta,德国 CeramTec 公司)球窝样品进行了测试,测试时采用位移控制,轴向压缩力为 100 N,测试了五种运动模式:(1)屈伸(FE = ± 7.5°),(2)侧弯(LB = ± 6°),(3)组合 FE-LB(4)组合 FE 和前后平移(AP = 3 毫米),以及(5)组合 LB 和侧向运动(3 毫米)。对于旋转-平移联合运动,分析了两种情况:样本旋转后的过度平移运动(情况 1)和旋转过程中的过度平移运动(情况 2)。(3) 结果:与单向运动模式相比,FE-LB 组合运动模式产生的力和力矩更大。对于旋转-平移联合运动(情况 1),半脱位发生在 FE = 7.5°,AP 平移增量 = 1.49 ± 0.18 mm,LB = 6°,侧移增量 = 2.22 ± 0.16 mm。在半脱位点,与单向运动时相同角度的力相比,FE 和 LB 的 AP 力和侧向力的增量分别为 30.4 ± 3.14 N 和 40.8 ± 2.56 N。在方案 2 中,半脱位发生在 FE = 4.93°,AP 平移增量 = 1.75 mm,LB = 4.52°,侧移增量 = 1.99 mm。在半脱位点,与单向运动时相同角度的力相比,FE 和 LB 的 AP 力和侧向力的增量分别为 39.17 N 和 38.94 N。(4) 结论:新的测试方案提高了对体外测试中类似体内行为的理解。同时进行的平移-旋转运动表明,在较低的运动范围内会引发半脱位。在对拟议的复杂运动测试进行进一步验证后,这些新方法可用于未来脊柱运动保护植入物的开发和表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort. Driving Deployment of Bioengineered Products-An Arduous, Sometimes Tedious, Challenging, Rewarding, Most Exciting Journey That Has to Be Made! Evaluation of Load on Cervical Disc Prosthesis by Imposing Complex Motion: Multiplanar Motion and Combined Rotational-Translational Motion. Bovine Placentome-Derived Extracellular Matrix: A Sustainable 3D Scaffold for Cultivated Meat. Comparative Study of Alternative Methods for Measuring Leg Length Discrepancy after Robot-Assisted Total Hip Arthroplasty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1