Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy.

IF 2.4 Q3 BIOPHYSICS Biophysical reports Pub Date : 2024-08-26 DOI:10.1016/j.bpr.2024.100175
Garima Rani, Anupam Sengupta
{"title":"Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy.","authors":"Garima Rani, Anupam Sengupta","doi":"10.1016/j.bpr.2024.100175","DOIUrl":null,"url":null,"abstract":"<p><p>Spatiotemporal organization of individuals within growing bacterial colonies is a key determinant of intraspecific interactions and colony-scale heterogeneities. The evolving cellular distribution, in relation to the genealogical lineage, is thus central to our understanding of bacterial fate across scales. Yet, how bacteria self-organize genealogically as a colony expands has remained unknown. Here, by developing a custom-built label-free algorithm, we track and study the genesis and evolution of emergent self-similar genealogical enclaves, whose dynamics are governed by biological activity. Topological defects at enclave boundaries tune finger-like morphologies of the active interfaces. The Shannon entropy of cell arrangements reduce over time; with faster-dividing cells possessing higher spatial affinity to genealogical relatives, at the cost of a well-mixed, entropically favorable state. Our coarse-grained lattice model demonstrates that genealogical enclaves emerge due to an interplay of division-mediated dispersal, stochasticity of division events, and cell-cell interactions. The study reports so-far hidden emergent self-organizing features arising due to entropic suppression, ultimately modulating intraspecific genealogical distances within bacterial colonies.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2024.100175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatiotemporal organization of individuals within growing bacterial colonies is a key determinant of intraspecific interactions and colony-scale heterogeneities. The evolving cellular distribution, in relation to the genealogical lineage, is thus central to our understanding of bacterial fate across scales. Yet, how bacteria self-organize genealogically as a colony expands has remained unknown. Here, by developing a custom-built label-free algorithm, we track and study the genesis and evolution of emergent self-similar genealogical enclaves, whose dynamics are governed by biological activity. Topological defects at enclave boundaries tune finger-like morphologies of the active interfaces. The Shannon entropy of cell arrangements reduce over time; with faster-dividing cells possessing higher spatial affinity to genealogical relatives, at the cost of a well-mixed, entropically favorable state. Our coarse-grained lattice model demonstrates that genealogical enclaves emerge due to an interplay of division-mediated dispersal, stochasticity of division events, and cell-cell interactions. The study reports so-far hidden emergent self-organizing features arising due to entropic suppression, ultimately modulating intraspecific genealogical distances within bacterial colonies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新出现的谱系混杂抑制了生长细菌菌落中细胞排列的时间熵。
生长中的细菌菌落中个体的时空组织是决定种内相互作用和菌落尺度异质性的关键因素。因此,与谱系相关的不断演变的细胞分布是我们了解细菌跨尺度命运的核心。然而,随着菌落的扩大,细菌如何自我组织谱系一直是个未知数。在这里,通过开发一种定制的无标签算法,我们跟踪并研究了出现的自相似系谱飞地的起源和演化,其动态受生物活动的支配。飞地边界的拓扑缺陷调整了活动界面的指状形态。细胞排列的香农熵会随着时间的推移而降低;分裂较快的细胞与系谱亲缘细胞的空间亲和力较高,但其代价是细胞处于混合良好的有利熵态。我们的粗粒度晶格模型表明,系谱飞地的出现是由分裂介导的分散、分裂事件的随机性以及细胞与细胞之间的相互作用共同作用的结果。这项研究报告了由于熵抑制而产生的迄今不为人知的新兴自组织特征,这些特征最终调节了细菌菌落内的种内谱系距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
Development of a digital amplifier system for cut-open oocyte electrophysiology. Structural studies of the human α1 glycine receptor via site-specific chemical cross-linking coupled with mass spectrometry. Expression level of cardiac ryanodine receptors dictates properties of Ca2+-induced Ca2+ release. Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network. Magnetic field platform for experiments on well-mixed and spatially structured microbial populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1