Yigao Zhang , Haiyan Xu , Yang He , Hanxiao Bian , Renhua Jiang , Qiang Zhao , Dongcai Li , Aiguo Wang , Daosheng Sun
{"title":"Zn-doped V2O5 film electrodes as cathode materials for high-performance thin-film zinc-ion batteries","authors":"Yigao Zhang , Haiyan Xu , Yang He , Hanxiao Bian , Renhua Jiang , Qiang Zhao , Dongcai Li , Aiguo Wang , Daosheng Sun","doi":"10.1016/j.ssi.2024.116658","DOIUrl":null,"url":null,"abstract":"<div><p>Zn-doped V<sub>2</sub>O<sub>5</sub> film electrodes were prepared by in-situ growth on indium‑tin oxide (ITO) conductive glass by a low-temperature liquid-phase deposition method and calcined by calcination treatment, and assembled into thin-film zinc-ion batteries (ZIBs). After galvanostatic charge/discharge (GCD) tests with 90 and 200 charge/discharge cycles, the ZIBs system provided specific capacities of 95.7 mAh m<sup>−2</sup> and 63.9 mAh m<sup>−2</sup> with capacity retention rates of 97.88% and 78.72%, respectively. The electrochemical reaction process of the Zn-doped V<sub>2</sub>O<sub>5</sub> film electrode was analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to understand the insertion/extraction mechanism of Zn<sup>2+</sup>. The doping of appropriate amount of Zn<sup>2+</sup> in the preparation plays the role of “pillar”, which helps to stabilize the structure of V<sub>2</sub>O<sub>5</sub> and improve the cycling stability and lifetime. Therefore, the research may provide a new idea for the assembly and preparation of thin-film ZIBs with improved performance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116658"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002066","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zn-doped V2O5 film electrodes were prepared by in-situ growth on indium‑tin oxide (ITO) conductive glass by a low-temperature liquid-phase deposition method and calcined by calcination treatment, and assembled into thin-film zinc-ion batteries (ZIBs). After galvanostatic charge/discharge (GCD) tests with 90 and 200 charge/discharge cycles, the ZIBs system provided specific capacities of 95.7 mAh m−2 and 63.9 mAh m−2 with capacity retention rates of 97.88% and 78.72%, respectively. The electrochemical reaction process of the Zn-doped V2O5 film electrode was analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to understand the insertion/extraction mechanism of Zn2+. The doping of appropriate amount of Zn2+ in the preparation plays the role of “pillar”, which helps to stabilize the structure of V2O5 and improve the cycling stability and lifetime. Therefore, the research may provide a new idea for the assembly and preparation of thin-film ZIBs with improved performance.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.