Simulation and calculation of the radiation attenuation parameters of newly developed bismuth boro-tellurite glass system

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-08-29 DOI:10.1016/j.jrras.2024.101091
{"title":"Simulation and calculation of the radiation attenuation parameters of newly developed bismuth boro-tellurite glass system","authors":"","doi":"10.1016/j.jrras.2024.101091","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a comprehensive simulation and calculation study of the radiation attenuation parameters for a newly developed bismuth boro tellurite glass system. Through advanced computational modeling and theoretical analysis, linear and mass attenuation coefficients (μ and μ/ρ), and other key radiation attenuation parameters of the studied glass system are thoroughly investigated across a range of photon energies. Utilizing state-of-the-art simulation techniques and theoretical models, the radiation shielding effectiveness of the glass system is evaluated, offering insights into its potential applications in radiation protection and shielding. We found that the Σ<sub>R</sub> values for fast neutrons are 0.10013, 0.10221, 0.10953, 0.11347 and 0.11383 cm<sup>−1</sup> for BTBiBV-1, BTBiBV-2, BTBiBV-3, BTBiBV-4, and BTBiBV-5, respectively. The results of this study contribute to the understanding of the radiation attenuation properties of bismuth boro tellurite glasses and provide valuable information for their utilization in various fields, including medical imaging, nuclear power, and industrial radiography. Additionally, accurate modeling and characterization of attenuation parameters across different photon energies are crucial for designing effective radiation protection strategies and ensuring the safety of personnel and equipment in radiation environments.</p></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687850724002759/pdfft?md5=b0e0478fd1602255c4f46c0900ebff4b&pid=1-s2.0-S1687850724002759-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724002759","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive simulation and calculation study of the radiation attenuation parameters for a newly developed bismuth boro tellurite glass system. Through advanced computational modeling and theoretical analysis, linear and mass attenuation coefficients (μ and μ/ρ), and other key radiation attenuation parameters of the studied glass system are thoroughly investigated across a range of photon energies. Utilizing state-of-the-art simulation techniques and theoretical models, the radiation shielding effectiveness of the glass system is evaluated, offering insights into its potential applications in radiation protection and shielding. We found that the ΣR values for fast neutrons are 0.10013, 0.10221, 0.10953, 0.11347 and 0.11383 cm−1 for BTBiBV-1, BTBiBV-2, BTBiBV-3, BTBiBV-4, and BTBiBV-5, respectively. The results of this study contribute to the understanding of the radiation attenuation properties of bismuth boro tellurite glasses and provide valuable information for their utilization in various fields, including medical imaging, nuclear power, and industrial radiography. Additionally, accurate modeling and characterization of attenuation parameters across different photon energies are crucial for designing effective radiation protection strategies and ensuring the safety of personnel and equipment in radiation environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新开发的铋硼碲玻璃系统辐射衰减参数的模拟与计算
本文对新开发的铋硼碲玻璃体系的辐射衰减参数进行了全面的模拟和计算研究。通过先进的计算建模和理论分析,对所研究的玻璃体系的线性和质量衰减系数(μ 和 μ/ρ)以及其他关键辐射衰减参数在一定光子能量范围内进行了深入研究。利用最先进的模拟技术和理论模型,对玻璃系统的辐射屏蔽效果进行了评估,为其在辐射防护和屏蔽领域的潜在应用提供了启示。我们发现,BTBiBV-1、BTBiBV-2、BTBiBV-3、BTBiBV-4 和 BTBiBV-5 对快中子的 ΣR 值分别为 0.10013、0.10221、0.10953、0.11347 和 0.11383 cm-1。本研究的结果有助于人们了解铋硼碲玻璃的辐射衰减特性,并为其在医疗成像、核能和工业射线照相等多个领域的应用提供了有价值的信息。此外,对不同光子能量的衰减参数进行精确建模和表征对于设计有效的辐射防护策略以及确保辐射环境中人员和设备的安全至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
Optical and gamma-ray shielding properties of lead phosphate glasses by controlled copper oxide doping Statistical inference on the exponentiated moment exponential distribution and its discretization Cross-region feature fusion of global and local area for subtype classification prediction in cervical tumour Impact of nonlinear thermal radiation for magnetized dissipative flow of ternary hybrid nanomaterial (Al2 O3- SiO2- Fe3 O4- H2 O) Exploring the dynamic behavior of the two-phase model in radiative non-Newtonian nanofluid flow with Hall current and ion slip effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1