Introducing the unit Zeghdoudi distribution as a novel statistical model for analyzing proportional data

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-11-23 DOI:10.1016/j.jrras.2024.101204
Sule Omeiza Bashiru , Mohamed Kayid , R. Mahmoud , Oluwafemi Samson Balogun , M. M. Abd El-Raouf , Ahmed M. Gemeay
{"title":"Introducing the unit Zeghdoudi distribution as a novel statistical model for analyzing proportional data","authors":"Sule Omeiza Bashiru ,&nbsp;Mohamed Kayid ,&nbsp;R. Mahmoud ,&nbsp;Oluwafemi Samson Balogun ,&nbsp;M. M. Abd El-Raouf ,&nbsp;Ahmed M. Gemeay","doi":"10.1016/j.jrras.2024.101204","DOIUrl":null,"url":null,"abstract":"<div><div>Unit distributions are essential in statistical modeling, providing a robust framework for understanding variables constrained within the unit interval [0,1]. This interval is crucial in public health, environmental studies, engineering, and finance, where measurements often represent proportions, probabilities, or rates. Despite numerous unit distributions derived by transforming existing distributions, there remains a pressing need for new distributions that can accommodate the unique characteristics of diverse datasets. In this study, we introduce the unit Zeghdoudi distribution (UZD), a novel transformation of the Zeghdoudi distribution (ZD). This new distribution retains the simplicity of the original ZD while offering enhanced flexibility and precision in modeling data confined to the unit interval. The UZD exhibits several noteworthy features, including both right and left-skewed probability density functions, a closed-form quantile function, easily defined moments, and manageable entropies. Using sixteen classical methods for parameter estimation, supported by a comprehensive simulation study, we demonstrate the efficiency and reliability of the UZD. Finally, the application of the UZD to three real-world proportional datasets related to (COVID-19, environmental, and radiation datasets) underscores its effectiveness and demonstrates its superiority over several established models.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 1","pages":"Article 101204"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724003881","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Unit distributions are essential in statistical modeling, providing a robust framework for understanding variables constrained within the unit interval [0,1]. This interval is crucial in public health, environmental studies, engineering, and finance, where measurements often represent proportions, probabilities, or rates. Despite numerous unit distributions derived by transforming existing distributions, there remains a pressing need for new distributions that can accommodate the unique characteristics of diverse datasets. In this study, we introduce the unit Zeghdoudi distribution (UZD), a novel transformation of the Zeghdoudi distribution (ZD). This new distribution retains the simplicity of the original ZD while offering enhanced flexibility and precision in modeling data confined to the unit interval. The UZD exhibits several noteworthy features, including both right and left-skewed probability density functions, a closed-form quantile function, easily defined moments, and manageable entropies. Using sixteen classical methods for parameter estimation, supported by a comprehensive simulation study, we demonstrate the efficiency and reliability of the UZD. Finally, the application of the UZD to three real-world proportional datasets related to (COVID-19, environmental, and radiation datasets) underscores its effectiveness and demonstrates its superiority over several established models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引入单位扎格杜迪分布作为分析比例数据的新型统计模型
单位分布在统计建模中至关重要,它为理解受限于单位区间 [0,1] 的变量提供了一个稳健的框架。这个区间在公共卫生、环境研究、工程和金融领域至关重要,因为这些领域的测量通常代表比例、概率或比率。尽管有许多单位分布是通过对现有分布进行转换而得到的,但人们仍然迫切需要能适应各种数据集独特特征的新分布。在本研究中,我们引入了单位扎格杜迪分布 (UZD),它是扎格杜迪分布 (ZD) 的一种新型变换。这种新的分布既保留了原始 ZD 的简洁性,又在对局限于单位区间的数据建模时提供了更高的灵活性和精确性。UZD 具有几个值得注意的特点,包括右斜和左斜概率密度函数、闭合形式的量子函数、易于定义的矩和易于管理的熵。我们使用 16 种经典的参数估计方法,并辅以全面的模拟研究,证明了 UZD 的效率和可靠性。最后,我们将 UZD 应用于三个与(COVID-19、环境和辐射数据集)相关的真实世界比例数据集,从而强调了 UZD 的有效性,并证明了它优于几个已建立的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
Optimizing thermal management with micropolar hybrid nanofluids in spatially dependent magnetic fields Implementation of homotopy analysis method for entropy-optimized two-phase nanofluid flow in a bioconvective non-Newtonian model with thermal radiation Comparative analysis of machine learning techniques for estimating dynamic viscosity in various nanofluids for improving the efficiency of thermal and radiative systems Enhanced diabetic macular edema detection in multicolor imaging through a multi-feature decomposition fusion attention network Analysis and data modelling of electrical appliances and radiation dose from an adaptive progressive censored XGamma competing risk model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1