Tumor vasculature associated nanomedicine strategies

IF 20.3 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Coordination Chemistry Reviews Pub Date : 2024-08-29 DOI:10.1016/j.ccr.2024.216189
{"title":"Tumor vasculature associated nanomedicine strategies","authors":"","doi":"10.1016/j.ccr.2024.216189","DOIUrl":null,"url":null,"abstract":"<div><p>The tumor vasculature plays a crucial role in promoting tumor growth and metastasis, showcasing heterogeneity in terms of tissue composition, functionality, and structural characteristics. The main limitation of traditional anti-tumor therapy arises from the disordered occlusion and structural abnormalities present within the vascular network of the tumor, which create a bottleneck effect. Hence, the advancement of nanomedicine techniques targeting the tumor vascular system offer a fresh and exciting direction for the treatment of cancer. In this review, the intricate dynamics between the tumor microenvironment (TME) and the tumor vasculature is explored with a focus on the functions of hypoxia, increased angiogenic factor expression, and inflammatory cytokines in the TME. Furthermore, this review provides a comprehensive analysis of various vascular-related treatments, delving into the mechanisms behind each approach. Specifically, the recent advancements in nanomedicines targeting for therapeutic strategies are highlighted, namely anti-tumor angiogenic therapy, tumor vascular structure disruption, tumor vasculature normalization, and embolization therapy. Lastly, an overview of the challenges and prospects associated with tumor vascular therapy using nanomedicines is presented.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005356","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The tumor vasculature plays a crucial role in promoting tumor growth and metastasis, showcasing heterogeneity in terms of tissue composition, functionality, and structural characteristics. The main limitation of traditional anti-tumor therapy arises from the disordered occlusion and structural abnormalities present within the vascular network of the tumor, which create a bottleneck effect. Hence, the advancement of nanomedicine techniques targeting the tumor vascular system offer a fresh and exciting direction for the treatment of cancer. In this review, the intricate dynamics between the tumor microenvironment (TME) and the tumor vasculature is explored with a focus on the functions of hypoxia, increased angiogenic factor expression, and inflammatory cytokines in the TME. Furthermore, this review provides a comprehensive analysis of various vascular-related treatments, delving into the mechanisms behind each approach. Specifically, the recent advancements in nanomedicines targeting for therapeutic strategies are highlighted, namely anti-tumor angiogenic therapy, tumor vascular structure disruption, tumor vasculature normalization, and embolization therapy. Lastly, an overview of the challenges and prospects associated with tumor vascular therapy using nanomedicines is presented.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与肿瘤血管相关的纳米医学策略
肿瘤血管在促进肿瘤生长和转移方面起着至关重要的作用,在组织组成、功能和结构特征方面具有异质性。传统抗肿瘤疗法的主要局限性在于肿瘤血管网络中存在的无序闭塞和结构异常,从而产生瓶颈效应。因此,针对肿瘤血管系统的纳米医学技术的发展为癌症治疗提供了一个令人振奋的新方向。本综述探讨了肿瘤微环境(TME)与肿瘤血管之间错综复杂的动态关系,重点关注肿瘤微环境中缺氧、血管生成因子表达增加和炎性细胞因子的功能。此外,本综述还全面分析了各种与血管相关的治疗方法,深入探讨了每种方法背后的机制。具体而言,重点介绍了纳米药物靶向治疗策略的最新进展,即抗肿瘤血管生成疗法、肿瘤血管结构破坏疗法、肿瘤血管正常化疗法和栓塞疗法。最后,概述了使用纳米药物进行肿瘤血管治疗所面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coordination Chemistry Reviews
Coordination Chemistry Reviews 化学-无机化学与核化学
CiteScore
34.30
自引率
5.30%
发文量
457
审稿时长
54 days
期刊介绍: Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers. The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.
期刊最新文献
Polyoxometalates emerging as multifunctional powerhouses in the battle against cancer Insights into excitons manipulation in metal chalcogenides based Nano-heterojunction Photocatalysts: A breakthrough in green hydrogen production Recent advances in metal-free photosensitizers for dye-sensitized photoelectrochemical cells Advances in reticular materials for sustainable rare earth element recovery Nanostructure-reinforced multifunctional hydrogels for synergistic cancer therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1