{"title":"Atomic-resolution investigations on dislocation-assisted evolution of {101¯3} twin boundaries in a magnesium alloy","authors":"Huhu Su , Qun Zu , Zhiqing Yang , Hengqiang Ye","doi":"10.1016/j.ijplas.2024.104108","DOIUrl":null,"url":null,"abstract":"<div><p>{10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>3}<span><math><mrow><mo>〈</mo><mn>30</mn><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover><mspace></mspace><mover><mrow><mn>2</mn></mrow><mo>‾</mo></mover><mo>〉</mo></mrow></math></span> twinning is usually activated at the later stage of plastic deformation of Mg alloys, which is closely relevant to their fracture behavior. Reactions between slip dislocations and twin boundaries (TBs) are suggested to facilitate TB migration, retarding the premature TB cracking. Here, dislocation-assisted evolution of {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>3} TBs in a Mg alloy subjected to cyclic deformation were studied and modeled, according to transmission electron microscopy observations, theoretical analyses of interfacial defects, and molecular dynamics simulations. Atomic-resolution experimental observations showed that symmetric tilt grain boundaries (STGBs) near the {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>3} twin orientation with steps were generated in the deformed Mg alloy. Theoretical analyses and atomistic simulations indicated that transformation of {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>3} TBs into the STGBs could occur by reactions with incident basal <span><math><mrow><mo>〈</mo><msub><mi>a</mi><mn>60</mn></msub><mo>〉</mo></mrow></math></span> dislocations in pairs from the twin and matrix respectively under the normal stress. STGB steps would be produced by reactions of individual basal <span><math><mrow><mo>〈</mo><msub><mi>a</mi><mn>60</mn></msub><mo>〉</mo></mrow></math></span> dislocations with GB dislocations at the STGB. Importantly, resultant steps could further emit {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>3} twinning dislocations to facilitate the STGB migration. Moreover, STGBs near the {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>3} twin orientation could evolve back into {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>3} TBs either by reactions with an array of basal <span><math><mrow><mo>〈</mo><msub><mi>a</mi><mn>60</mn></msub><mo>〉</mo></mrow></math></span> dislocations, or by a GB sliding of <strong><em>b</em></strong> = <span><math><mrow><mo>〈</mo><mn>30</mn><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover><mspace></mspace><mover><mrow><mn>2</mn></mrow><mo>‾</mo></mover><mo>〉</mo></mrow></math></span> theoretically. Our results may provide insights into the mechanisms of {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>3} TB evolution in Mg alloys, which plays important roles in their plastic deformation and plasticity.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104108"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002353","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
{103} twinning is usually activated at the later stage of plastic deformation of Mg alloys, which is closely relevant to their fracture behavior. Reactions between slip dislocations and twin boundaries (TBs) are suggested to facilitate TB migration, retarding the premature TB cracking. Here, dislocation-assisted evolution of {103} TBs in a Mg alloy subjected to cyclic deformation were studied and modeled, according to transmission electron microscopy observations, theoretical analyses of interfacial defects, and molecular dynamics simulations. Atomic-resolution experimental observations showed that symmetric tilt grain boundaries (STGBs) near the {103} twin orientation with steps were generated in the deformed Mg alloy. Theoretical analyses and atomistic simulations indicated that transformation of {103} TBs into the STGBs could occur by reactions with incident basal dislocations in pairs from the twin and matrix respectively under the normal stress. STGB steps would be produced by reactions of individual basal dislocations with GB dislocations at the STGB. Importantly, resultant steps could further emit {103} twinning dislocations to facilitate the STGB migration. Moreover, STGBs near the {103} twin orientation could evolve back into {103} TBs either by reactions with an array of basal dislocations, or by a GB sliding of b = theoretically. Our results may provide insights into the mechanisms of {103} TB evolution in Mg alloys, which plays important roles in their plastic deformation and plasticity.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.