BCLH2Pro: A novel computational tools approach for hydrogen production prediction via machine learning in biomass chemical looping processes

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-08-13 DOI:10.1016/j.egyai.2024.100414
{"title":"BCLH2Pro: A novel computational tools approach for hydrogen production prediction via machine learning in biomass chemical looping processes","authors":"","doi":"10.1016/j.egyai.2024.100414","DOIUrl":null,"url":null,"abstract":"<div><p>This study optimizes biomass chemical looping processes (BCLpro), a technique for converting biomass to energy, through machine learning (ML) for sustainable energy production. The study proposes an integrated Fe<sub>2</sub>O<sub>3</sub>-based ฺBCLpro combining steam gasification for H<sub>2</sub> production. Aspen Plus is used as the primary tool to generate extensive datasets covering 24 biomass types with 18 feature inputs in a supervised model. A methodology involving K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), Support Vector Machine (SVM), Random Forest (RF), and CatBoost (CB) algorithms was employed to predict H<sub>2</sub> yields in the BCLpro, utilizing 10-fold cross-validation for robust model evaluation. Findings highlight the CB algorithm's superior performance, achieving up to 98% predictive accuracy, with carbon content, reducer temperature, and Fe<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> mass ratio identified as crucial features. The algorithm has been developed into a user-friendly tool, BCLH2Pro, accessible via a web server. This tool is designed to assist in reducing costs, optimizing biomass selection, and planning operational conditions to maximize H<sub>2</sub> yield in BCLpro systems. Access to the tool can be obtained through the following link: <span><span>http://bclh2pro.pythonanywhere.com/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000806/pdfft?md5=1bf861d91694bc24b779a2308fd3e75c&pid=1-s2.0-S2666546824000806-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study optimizes biomass chemical looping processes (BCLpro), a technique for converting biomass to energy, through machine learning (ML) for sustainable energy production. The study proposes an integrated Fe2O3-based ฺBCLpro combining steam gasification for H2 production. Aspen Plus is used as the primary tool to generate extensive datasets covering 24 biomass types with 18 feature inputs in a supervised model. A methodology involving K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), Support Vector Machine (SVM), Random Forest (RF), and CatBoost (CB) algorithms was employed to predict H2 yields in the BCLpro, utilizing 10-fold cross-validation for robust model evaluation. Findings highlight the CB algorithm's superior performance, achieving up to 98% predictive accuracy, with carbon content, reducer temperature, and Fe2O3/Al2O3 mass ratio identified as crucial features. The algorithm has been developed into a user-friendly tool, BCLH2Pro, accessible via a web server. This tool is designed to assist in reducing costs, optimizing biomass selection, and planning operational conditions to maximize H2 yield in BCLpro systems. Access to the tool can be obtained through the following link: http://bclh2pro.pythonanywhere.com/.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BCLH2Pro:通过生物质化学循环过程中的机器学习预测制氢的新型计算工具方法
本研究通过机器学习(ML)优化生物质化学循环工艺(BCLpro),这是一种将生物质转化为能源的技术,可用于可持续能源生产。研究提出了一种基于 Fe2O3 的综合ฺBCLpro,结合蒸汽气化生产 H2。Aspen Plus 被用作主要工具,用于生成广泛的数据集,涵盖 24 种生物质类型,监督模型中有 18 个特征输入。在 BCLpro 中采用了 K-Nearest Neighbors (KNN)、Extreme Gradient Boosting (XGB)、Light Gradient Boosting Machine (LGBM)、Support Vector Machine (SVM)、Random Forest (RF) 和 CatBoost (CB) 算法预测 H2 产量,并利用 10 倍交叉验证对模型进行稳健评估。研究结果凸显了 CB 算法的卓越性能,预测准确率高达 98%,碳含量、还原剂温度和 Fe2O3/Al2O3 质量比被确定为关键特征。该算法已被开发成一个用户友好型工具 BCLH2Pro,可通过网络服务器访问。该工具旨在帮助 BCLpro 系统降低成本、优化生物质选择和规划运行条件,以最大限度地提高 H2 产量。可通过以下链接访问该工具:http://bclh2pro.pythonanywhere.com/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Optimizing catalyst layer composition of PEM fuel cell via machine learning: Insights from in-house experimental data A novel optimization framework for natural gas transportation pipeline networks based on deep reinforcement learning Exploring public attention in the circular economy through topic modelling with twin hyperparameter optimisation Adaptive control systems for dual axis tracker using clear sky index and output power forecasting based on ML in overcast weather conditions Supporting energy policy research with large language models: A case study in wind energy siting ordinances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1