Predicting gross domestic product using the ensemble machine learning method

M.D. Adewale , D.U. Ebem , O. Awodele , A. Sambo-Magaji , E.M. Aggrey , E.A. Okechalu , R.E. Donatus , K.A. Olayanju , A.F. Owolabi , J.U. Oju , O.C. Ubadike , G.A. Otu , U.I. Muhammed , O.R. Danjuma , O.P. Oluyide
{"title":"Predicting gross domestic product using the ensemble machine learning method","authors":"M.D. Adewale ,&nbsp;D.U. Ebem ,&nbsp;O. Awodele ,&nbsp;A. Sambo-Magaji ,&nbsp;E.M. Aggrey ,&nbsp;E.A. Okechalu ,&nbsp;R.E. Donatus ,&nbsp;K.A. Olayanju ,&nbsp;A.F. Owolabi ,&nbsp;J.U. Oju ,&nbsp;O.C. Ubadike ,&nbsp;G.A. Otu ,&nbsp;U.I. Muhammed ,&nbsp;O.R. Danjuma ,&nbsp;O.P. Oluyide","doi":"10.1016/j.sasc.2024.200132","DOIUrl":null,"url":null,"abstract":"<div><p>The need for more accurate GDP predictions in Nigeria has necessitated the exploration of additional indicators that reflect economic activities and socio-economic factors. This research pioneers a comprehensive approach to predicting Nigeria's Gross Domestic Product (GDP) by integrating a wide array of indicators beyond traditional economic metrics. The primary objective is to enhance the prediction accuracy of Nigeria's GDP using a diverse range of socio-economic indicators. Drawing from data spanning 2000 to 2021, the study incorporates variables like healthcare expenditure, net migration rates, population demographics, life expectancy, access to electricity, and internet usage. Utilising machine learning techniques such as Random Forest Regressor, XGBoost Regressor, and Linear Regression, the study rigorously evaluates the efficacy of these algorithms in forecasting GDP. The analysis reveals that all selected indicators have a strong correlation with GDP. Significantly, the Random Forest Regressor emerges as the most robust model, boasting an R<sup>2</sup> score of 0.96 and a Mean Absolute Error (MAE) of 24.29. The study underscores that optimising factors like healthcare, internet access, and electricity availability could serve as pivotal levers for accelerating Nigeria's economic growth.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200132"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000619/pdfft?md5=7f193f23447af29ddb7389addf11dbb3&pid=1-s2.0-S2772941924000619-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The need for more accurate GDP predictions in Nigeria has necessitated the exploration of additional indicators that reflect economic activities and socio-economic factors. This research pioneers a comprehensive approach to predicting Nigeria's Gross Domestic Product (GDP) by integrating a wide array of indicators beyond traditional economic metrics. The primary objective is to enhance the prediction accuracy of Nigeria's GDP using a diverse range of socio-economic indicators. Drawing from data spanning 2000 to 2021, the study incorporates variables like healthcare expenditure, net migration rates, population demographics, life expectancy, access to electricity, and internet usage. Utilising machine learning techniques such as Random Forest Regressor, XGBoost Regressor, and Linear Regression, the study rigorously evaluates the efficacy of these algorithms in forecasting GDP. The analysis reveals that all selected indicators have a strong correlation with GDP. Significantly, the Random Forest Regressor emerges as the most robust model, boasting an R2 score of 0.96 and a Mean Absolute Error (MAE) of 24.29. The study underscores that optimising factors like healthcare, internet access, and electricity availability could serve as pivotal levers for accelerating Nigeria's economic growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用集合机器学习法预测国内生产总值
尼日利亚需要更准确的国内生产总值预测,因此有必要探索更多反映经济活动和社会经济因素的指标。本研究通过整合传统经济指标之外的一系列指标,开创了预测尼日利亚国内生产总值(GDP)的综合方法。主要目的是利用各种社会经济指标提高尼日利亚国内生产总值的预测准确性。研究利用 2000 年至 2021 年的数据,纳入了医疗保健支出、净移民率、人口统计数据、预期寿命、用电情况和互联网使用率等变量。研究利用随机森林回归法、XGBoost 回归法和线性回归法等机器学习技术,严格评估了这些算法在预测 GDP 方面的功效。分析表明,所有选定指标都与国内生产总值有很强的相关性。值得注意的是,随机森林回归模型是最稳健的模型,其 R2 值为 0.96,平均绝对误差(MAE)为 24.29。这项研究强调,优化医疗保健、互联网接入和电力供应等因素可以成为加速尼日利亚经济增长的关键杠杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries Analyzing the quality evaluation of college English teaching based on probabilistic linguistic multiple-attribute group decision-making Interior design assistant algorithm based on indoor scene analysis Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology Sentiment analysis of movie reviews: A flask application using CNN with RoBERTa embeddings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1