An unsupervised video anomaly detection method via Optical Flow decomposition and Spatio-Temporal feature learning

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-09-01 DOI:10.1016/j.patrec.2024.08.013
Jin Fan , Yuxiang Ji , Huifeng Wu , Yan Ge , Danfeng Sun , Jia Wu
{"title":"An unsupervised video anomaly detection method via Optical Flow decomposition and Spatio-Temporal feature learning","authors":"Jin Fan ,&nbsp;Yuxiang Ji ,&nbsp;Huifeng Wu ,&nbsp;Yan Ge ,&nbsp;Danfeng Sun ,&nbsp;Jia Wu","doi":"10.1016/j.patrec.2024.08.013","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to present an unsupervised video anomaly detection method using Optical Flow decomposition and Spatio-Temporal feature learning (OFST). This method employs a combination of optical flow reconstruction and video frame prediction to achieve satisfactory results. The proposed OFST framework is composed of two modules: the Multi-Granularity Memory-augmented Autoencoder with Optical Flow Decomposition (MG-MemAE-OFD) and a Two-Stream Network based on Spatio-Temporal feature learning (TSN-ST). The MG-MemAE-OFD module is composed of three functional blocks: optical flow decomposition, autoencoder, and multi-granularity memory networks. The optical flow decomposition block is used to extract the main motion information of objects in optical flow, and the granularity memory network is utilized to memorize normal patterns and improve the quality of the reconstructions. To predict video frames, we introduce a two-stream network based on spatiotemporal feature learning (TSN-ST), which adopts parallel standard Transformer blocks and a temporal block to learn spatiotemporal features from video frames and optical flows. The OFST combines these two modules so that the prediction error of abnormal samples is further increased due to the larger reconstruction error. In contrast, the normal samples obtain a lower reconstruction error and prediction error. Therefore, the anomaly detection capability of the method is greatly enhanced. Our proposed model was evaluated on public datasets. Specifically, in terms of the area under the curve (AUC), our model achieved an accuracy of 85.74% on the Ped1 dataset, 99.62% on the Ped2 dataset, 93.89% on the Avenue dataset, and 76.0% on the ShanghaiTech Dataset. Our experimental results show an average improvement of 1.2% compared to the current state-of-the-art.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 239-246"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002459","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to present an unsupervised video anomaly detection method using Optical Flow decomposition and Spatio-Temporal feature learning (OFST). This method employs a combination of optical flow reconstruction and video frame prediction to achieve satisfactory results. The proposed OFST framework is composed of two modules: the Multi-Granularity Memory-augmented Autoencoder with Optical Flow Decomposition (MG-MemAE-OFD) and a Two-Stream Network based on Spatio-Temporal feature learning (TSN-ST). The MG-MemAE-OFD module is composed of three functional blocks: optical flow decomposition, autoencoder, and multi-granularity memory networks. The optical flow decomposition block is used to extract the main motion information of objects in optical flow, and the granularity memory network is utilized to memorize normal patterns and improve the quality of the reconstructions. To predict video frames, we introduce a two-stream network based on spatiotemporal feature learning (TSN-ST), which adopts parallel standard Transformer blocks and a temporal block to learn spatiotemporal features from video frames and optical flows. The OFST combines these two modules so that the prediction error of abnormal samples is further increased due to the larger reconstruction error. In contrast, the normal samples obtain a lower reconstruction error and prediction error. Therefore, the anomaly detection capability of the method is greatly enhanced. Our proposed model was evaluated on public datasets. Specifically, in terms of the area under the curve (AUC), our model achieved an accuracy of 85.74% on the Ped1 dataset, 99.62% on the Ped2 dataset, 93.89% on the Avenue dataset, and 76.0% on the ShanghaiTech Dataset. Our experimental results show an average improvement of 1.2% compared to the current state-of-the-art.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过光流分解和时空特征学习的无监督视频异常检测方法
本文旨在介绍一种使用光流分解和时空特征学习(OFST)的无监督视频异常检测方法。该方法将光流重构和视频帧预测相结合,取得了令人满意的效果。所提出的 OFST 框架由两个模块组成:具有光流分解功能的多粒度内存增强自动编码器(MG-MemAE-OFD)和基于时空特征学习的双流网络(TSN-ST)。MG-MemAE-OFD 模块由三个功能模块组成:光流分解、自动编码器和多粒度存储网络。光流分解模块用于提取光流中物体的主要运动信息,粒度记忆网络用于记忆正常模式并提高重建质量。为了预测视频帧,我们引入了基于时空特征学习的双流网络(TSN-ST),它采用并行的标准变换器块和时序块,从视频帧和光流中学习时空特征。OFST 将这两个模块结合在一起,由于重建误差较大,异常样本的预测误差会进一步增大。相比之下,正常样本的重构误差和预测误差较小。因此,该方法的异常检测能力大大增强。我们提出的模型在公共数据集上进行了评估。具体来说,就曲线下面积(AUC)而言,我们的模型在 Ped1 数据集上的准确率为 85.74%,在 Ped2 数据集上的准确率为 99.62%,在 Avenue 数据集上的准确率为 93.89%,在 ShanghaiTech 数据集上的准确率为 76.0%。实验结果表明,与目前最先进的技术相比,我们的模型平均提高了 1.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Prototypical class-wise test-time adaptation Improving ViT interpretability with patch-level mask prediction Sparse-attention augmented domain adaptation for unsupervised person re-identification GANzzle++: Generative approaches for jigsaw puzzle solving as local to global assignment in latent spatial representations Neuromorphic face analysis: A survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1