Multichannel image classification based on adaptive attribute profiles

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-11-23 DOI:10.1016/j.patrec.2024.11.015
Wonder A.L. Alves , Wander S. Campos , Charles F. Gobber , Dennis J. Silva , Ronaldo F. Hashimoto
{"title":"Multichannel image classification based on adaptive attribute profiles","authors":"Wonder A.L. Alves ,&nbsp;Wander S. Campos ,&nbsp;Charles F. Gobber ,&nbsp;Dennis J. Silva ,&nbsp;Ronaldo F. Hashimoto","doi":"10.1016/j.patrec.2024.11.015","DOIUrl":null,"url":null,"abstract":"<div><div>Morphological Attribute Profiles serve as powerful tools for extracting meaningful features from remote sensing data. The construction of Morphological Attribute Profiles relies on two primary parameters: the choice of attribute type and the definition of a numerical threshold sequence. However, selecting an appropriate threshold sequence can be a difficult task, as an inappropriate choice can lead to an uninformative feature space. In this paper, we propose a semi-automatic approach based on the theory of Maximally Stable Extremal Regions to address this challenge. Our approach takes an increasing attribute type and an initial sequence of thresholds as input and locally adjusts threshold values based on region stability within the image. Experimental results demonstrate that our method significantly increases classification accuracy through the refinement of threshold values.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"187 ","pages":"Pages 107-114"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003192","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Morphological Attribute Profiles serve as powerful tools for extracting meaningful features from remote sensing data. The construction of Morphological Attribute Profiles relies on two primary parameters: the choice of attribute type and the definition of a numerical threshold sequence. However, selecting an appropriate threshold sequence can be a difficult task, as an inappropriate choice can lead to an uninformative feature space. In this paper, we propose a semi-automatic approach based on the theory of Maximally Stable Extremal Regions to address this challenge. Our approach takes an increasing attribute type and an initial sequence of thresholds as input and locally adjusts threshold values based on region stability within the image. Experimental results demonstrate that our method significantly increases classification accuracy through the refinement of threshold values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应属性轮廓的多通道图像分类
形态属性轮廓是提取遥感数据中有意义特征的有力工具。形态学属性概况的构建依赖于两个主要参数:属性类型的选择和数值阈值序列的定义。然而,选择合适的阈值序列可能是一项困难的任务,因为不适当的选择可能导致信息不足的特征空间。在本文中,我们提出了一种基于极大稳定极区理论的半自动方法来解决这一挑战。我们的方法采用增加属性类型和初始阈值序列作为输入,并根据图像内的区域稳定性局部调整阈值。实验结果表明,该方法通过对阈值的细化,显著提高了分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Bilateral symmetry-based augmentation method for improved tooth segmentation in panoramic X-rays GAF-Net: A new automated segmentation method based on multiscale feature fusion and feedback module Segmentation of MRI tumors and pelvic anatomy via cGAN-synthesized data and attention-enhanced U-Net Multichannel image classification based on adaptive attribute profiles Incremental component tree contour computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1