A hyperspectral metal concentration inversion method using attention mechanism and graph neural network

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY Ecological Informatics Pub Date : 2024-08-24 DOI:10.1016/j.ecoinf.2024.102792
Lei Zhang
{"title":"A hyperspectral metal concentration inversion method using attention mechanism and graph neural network","authors":"Lei Zhang","doi":"10.1016/j.ecoinf.2024.102792","DOIUrl":null,"url":null,"abstract":"<div><p>Soil heavy metal contamination has emerged as a global environmental concern, posing significant risks to human health and ecosystem integrity. Hyperspectral technology, with its non-invasive, non-destructive, large-scale, and high spectral resolution capabilities, shows promising applications in monitoring soil heavy metal pollution. Traditional monitoring methods are often time-consuming, labor-intensive, and expensive, limiting their effectiveness for rapid, large-scale assessments. This study introduces a novel deep learning method, SpecMet, for estimating heavy metal concentrations in naturally contaminated agricultural soils using hyperspectral data. The SpecMet model extracts features from hyperspectral data using convolutional neural networks (CNNs) and achieves end-to-end prediction of soil heavy metal concentrations by integrating attention mechanisms and graph neural networks. Results demonstrate that the OR-SpecMet model, which utilizes raw spectral data, achieves optimal prediction performance, significantly surpassing traditional machine learning methods such as multiple linear regression, partial least squares regression, and support vector machine regression in estimating concentrations of lead (Pb), copper (Cu), cadmium (Cd), and mercury (Hg). Moreover, training specialized OR-SpecMet models for individual heavy metals better accommodates their unique spectral-concentration relationships, enhancing overall estimation accuracy while achieving a 20.3 % improvement in predicting low-concentration mercury. The OR-SpecMet method showcases the superior performance and extensive application potential of deep learning techniques in precise soil heavy metal pollution monitoring, offering new insights and reliable technical support for soil pollution prevention and agricultural ecosystem protection. The code and datasets used in this study are publicly available at: <span><span>https://github.com/zhang2lei/metal.git</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574954124003340/pdfft?md5=408d86a5a8c2f813bf658873fbbc0a9d&pid=1-s2.0-S1574954124003340-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003340","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil heavy metal contamination has emerged as a global environmental concern, posing significant risks to human health and ecosystem integrity. Hyperspectral technology, with its non-invasive, non-destructive, large-scale, and high spectral resolution capabilities, shows promising applications in monitoring soil heavy metal pollution. Traditional monitoring methods are often time-consuming, labor-intensive, and expensive, limiting their effectiveness for rapid, large-scale assessments. This study introduces a novel deep learning method, SpecMet, for estimating heavy metal concentrations in naturally contaminated agricultural soils using hyperspectral data. The SpecMet model extracts features from hyperspectral data using convolutional neural networks (CNNs) and achieves end-to-end prediction of soil heavy metal concentrations by integrating attention mechanisms and graph neural networks. Results demonstrate that the OR-SpecMet model, which utilizes raw spectral data, achieves optimal prediction performance, significantly surpassing traditional machine learning methods such as multiple linear regression, partial least squares regression, and support vector machine regression in estimating concentrations of lead (Pb), copper (Cu), cadmium (Cd), and mercury (Hg). Moreover, training specialized OR-SpecMet models for individual heavy metals better accommodates their unique spectral-concentration relationships, enhancing overall estimation accuracy while achieving a 20.3 % improvement in predicting low-concentration mercury. The OR-SpecMet method showcases the superior performance and extensive application potential of deep learning techniques in precise soil heavy metal pollution monitoring, offering new insights and reliable technical support for soil pollution prevention and agricultural ecosystem protection. The code and datasets used in this study are publicly available at: https://github.com/zhang2lei/metal.git.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用注意力机制和图神经网络的高光谱金属浓度反演方法
土壤重金属污染已成为全球关注的环境问题,对人类健康和生态系统完整性构成重大风险。超光谱技术具有非侵入性、非破坏性、大规模和高光谱分辨率等特点,在监测土壤重金属污染方面有着广阔的应用前景。传统的监测方法往往耗时、耗力且成本高昂,限制了其快速、大规模评估的有效性。本研究介绍了一种新型深度学习方法--SpecMet,用于利用高光谱数据估算自然污染农田土壤中的重金属浓度。SpecMet 模型利用卷积神经网络(CNN)从高光谱数据中提取特征,并通过整合注意力机制和图神经网络实现土壤重金属浓度的端到端预测。结果表明,利用原始光谱数据的 OR-SpecMet 模型实现了最佳预测性能,在估计铅(Pb)、铜(Cu)、镉(Cd)和汞(Hg)浓度方面大大超过了多元线性回归、偏最小二乘回归和支持向量机回归等传统机器学习方法。此外,针对个别重金属训练专门的 OR-SpecMet 模型能更好地适应其独特的光谱-浓度关系,从而提高整体估算的准确性,同时在预测低浓度汞方面提高了 20.3%。OR-SpecMet方法展示了深度学习技术在土壤重金属污染精准监测中的卓越性能和广泛应用潜力,为土壤污染防治和农业生态系统保护提供了新的见解和可靠的技术支持。本研究使用的代码和数据集可在以下网址公开获取:https://github.com/zhang2lei/metal.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
期刊最新文献
The retrospective double-entry of a long-term ecological dataset Integrating infiltration processes in hybrid downscaling methods to estimate sub-surface soil moisture A deep learning pipeline for time-lapse camera monitoring of insects and their floral environments A complete framework for hyperbolic acoustic localization with application to northern bobwhite covey calls Impacts of LULC changes on runoff from rivers through a coupled SWAT and BiLSTM model: A case study in Zhanghe River Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1