Jiawen Liu , Xianqi Zhang , Xiaoyan Wu , Yang Yang , Yupeng Zheng
{"title":"Impacts of LULC changes on runoff from rivers through a coupled SWAT and BiLSTM model: A case study in Zhanghe River Basin, China","authors":"Jiawen Liu , Xianqi Zhang , Xiaoyan Wu , Yang Yang , Yupeng Zheng","doi":"10.1016/j.ecoinf.2024.102866","DOIUrl":null,"url":null,"abstract":"<div><div>Changes in river runoff have a significant impact on the sustainable use of water resources in a watershed, and these changes are closely linked to variations in land use/land cover (LULC). This research explores an innovative approach in the Zhang River Basin (ZRB), China, by coupling a concept-based hydrological model, the Soil and Water Assessment Tool (SWAT), with a deep-learning model, the Bidirectional Long Short-Term Memory Network (Bi-LSTM), to improve the accuracy of river runoff simulations. By analyzing LULC changes in 2002, 2012, and 2022, this study developed three SWAT models and three coupled SWAT-BiLSTM models to quantitatively assess the impacts of these changes on river runoff through eight LULC scenarios. The findings revealed significant LULC changes from 2002 to 2022, with cropland and grassland areas decreasing while forest and urban land areas increased. The total area of grassland, forest, and cropland made up over 93 % of the basin, indicating active land type conversions. Calibration and validation results demonstrated that the SWAT-BiLSTM model outperformed the conventional SWAT model, yielding higher accuracy in runoff simulations. Specifically, the SWAT-BiLSTM model achieved R<sup>2</sup> values of 0.89 and 0.90 during calibration and validation, compared to the SWAT model's R<sup>2</sup> values of 0.76 and 0.79. Scenario analyses indicated that expansions in farmland, grassland, and urban areas were correlated with increased river runoff, while an expansion in forested areas led to reduced runoff. Notably, urban land changes had the most pronounced impact on runoff, emphasizing the need for careful runoff management and flood risk mitigation in urban planning. By combining SWAT and Bi-LSTM models, this study provides an innovative assessment of the impact of LULC changes on water resources in the ZRB. The results offer valuable insights for water resource management, LULC optimization, and flood risk management, highlighting the potential application of deep learning techniques in hydrological simulation. This research serves as a scientific basis for policy-making and sustainable land use planning in the ZRB and similar regions.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102866"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004084","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in river runoff have a significant impact on the sustainable use of water resources in a watershed, and these changes are closely linked to variations in land use/land cover (LULC). This research explores an innovative approach in the Zhang River Basin (ZRB), China, by coupling a concept-based hydrological model, the Soil and Water Assessment Tool (SWAT), with a deep-learning model, the Bidirectional Long Short-Term Memory Network (Bi-LSTM), to improve the accuracy of river runoff simulations. By analyzing LULC changes in 2002, 2012, and 2022, this study developed three SWAT models and three coupled SWAT-BiLSTM models to quantitatively assess the impacts of these changes on river runoff through eight LULC scenarios. The findings revealed significant LULC changes from 2002 to 2022, with cropland and grassland areas decreasing while forest and urban land areas increased. The total area of grassland, forest, and cropland made up over 93 % of the basin, indicating active land type conversions. Calibration and validation results demonstrated that the SWAT-BiLSTM model outperformed the conventional SWAT model, yielding higher accuracy in runoff simulations. Specifically, the SWAT-BiLSTM model achieved R2 values of 0.89 and 0.90 during calibration and validation, compared to the SWAT model's R2 values of 0.76 and 0.79. Scenario analyses indicated that expansions in farmland, grassland, and urban areas were correlated with increased river runoff, while an expansion in forested areas led to reduced runoff. Notably, urban land changes had the most pronounced impact on runoff, emphasizing the need for careful runoff management and flood risk mitigation in urban planning. By combining SWAT and Bi-LSTM models, this study provides an innovative assessment of the impact of LULC changes on water resources in the ZRB. The results offer valuable insights for water resource management, LULC optimization, and flood risk management, highlighting the potential application of deep learning techniques in hydrological simulation. This research serves as a scientific basis for policy-making and sustainable land use planning in the ZRB and similar regions.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.