{"title":"Depth-of-field enhancement in light field display based on fusion of voxel information on the depth plane","authors":"","doi":"10.1016/j.optlaseng.2024.108543","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the performance of 3D light field display(LFD) devices and optimize their display effects, a depth-of-field (DOF) enhancement in LFD based on fusion of voxel information on the depth plane is proposed. In previous research, a calculation method was developed to calculate the voxel size on the depth plane. According to this calculation method, a distribution model of voxel varying with display depth is established. A DOF determination criterion based on voxel distribution from visual perspective is proposed, and its accuracy is validated through subjective experiments involving multiple participants. By fusing the voxels on the depth plane, the phenomenon of voxel overlap is improved, resulting in enhanced definition of 3D images on the depth plane. Under the condition that the structure and parameters of the 3D LFD device are determined, the maximum achievable display depth will be increased significantly. Finally, experimental validation of the method's feasibility is conducted using multiple 3D light field devices for display.</p></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005219","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the performance of 3D light field display(LFD) devices and optimize their display effects, a depth-of-field (DOF) enhancement in LFD based on fusion of voxel information on the depth plane is proposed. In previous research, a calculation method was developed to calculate the voxel size on the depth plane. According to this calculation method, a distribution model of voxel varying with display depth is established. A DOF determination criterion based on voxel distribution from visual perspective is proposed, and its accuracy is validated through subjective experiments involving multiple participants. By fusing the voxels on the depth plane, the phenomenon of voxel overlap is improved, resulting in enhanced definition of 3D images on the depth plane. Under the condition that the structure and parameters of the 3D LFD device are determined, the maximum achievable display depth will be increased significantly. Finally, experimental validation of the method's feasibility is conducted using multiple 3D light field devices for display.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques