A review on assessing innovative materials and technologies for carbon dioxide conversion to valuables

Anjali Prasad , Ramesh Kumar , Suresh Sundaramurthy , Arisutha Suresh , Rashid Ayub , Moonis Ali Khan
{"title":"A review on assessing innovative materials and technologies for carbon dioxide conversion to valuables","authors":"Anjali Prasad ,&nbsp;Ramesh Kumar ,&nbsp;Suresh Sundaramurthy ,&nbsp;Arisutha Suresh ,&nbsp;Rashid Ayub ,&nbsp;Moonis Ali Khan","doi":"10.1016/j.ccst.2024.100287","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dioxide (CO<sub>2</sub>) is a ubiquitous molecule that is essential for the existence of life on Earth. However, the ever-increasing anthropogenic CO<sub>2</sub> emissions in the environment have resulted in global warming-via-climate change. CO<sub>2</sub> is an inexpensive substrate that can be utilized to produce fuels and value-added chemicals through numerous chemical and biological processes to boost the circular economy with a negative carbon cycle in the future. Conventional technologies practiced capturing CO<sub>2</sub> suffer from several limitations, such as high capital costs, high energy input, complicated designs, CO<sub>2</sub> leakage, and kinetic limitations in various steps. To offset these limitations and negative impacts, this study assessed the emerging CO<sub>2</sub> capture and sequestration (CCS) technologies in value-added products that can boost the nation's economy and lower energy consumption while preserving global environmental quality. Various emerging CCS technologies, such as heterogeneous catalytic conversion, plasma technology, photocatalytic conversion, and other technologies (electrochemical or electrocatalysis, photoelectrochemical, thermo-catalysis, and biochemical and radiolysis), were discussed for efficient utilization and transformation of CO<sub>2</sub>. In addition, it also explored how the various transformation technologies affected the characteristics, economic value, and quality of value-added chemicals/fuels. This review also covered environmental and economic implications from scientific perspectives, and lastly, the future outlook and associated challenges were discussed.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100287"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277265682400099X/pdfft?md5=86ce1f6eeffab40e5e339c8112393eaf&pid=1-s2.0-S277265682400099X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277265682400099X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide (CO2) is a ubiquitous molecule that is essential for the existence of life on Earth. However, the ever-increasing anthropogenic CO2 emissions in the environment have resulted in global warming-via-climate change. CO2 is an inexpensive substrate that can be utilized to produce fuels and value-added chemicals through numerous chemical and biological processes to boost the circular economy with a negative carbon cycle in the future. Conventional technologies practiced capturing CO2 suffer from several limitations, such as high capital costs, high energy input, complicated designs, CO2 leakage, and kinetic limitations in various steps. To offset these limitations and negative impacts, this study assessed the emerging CO2 capture and sequestration (CCS) technologies in value-added products that can boost the nation's economy and lower energy consumption while preserving global environmental quality. Various emerging CCS technologies, such as heterogeneous catalytic conversion, plasma technology, photocatalytic conversion, and other technologies (electrochemical or electrocatalysis, photoelectrochemical, thermo-catalysis, and biochemical and radiolysis), were discussed for efficient utilization and transformation of CO2. In addition, it also explored how the various transformation technologies affected the characteristics, economic value, and quality of value-added chemicals/fuels. This review also covered environmental and economic implications from scientific perspectives, and lastly, the future outlook and associated challenges were discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳转化为贵重物品的创新材料和技术评估综述
二氧化碳(CO2)是一种无处不在的分子,是地球上生命存在的必要条件。然而,环境中不断增加的人为二氧化碳排放导致了全球变暖和气候变化。二氧化碳是一种价格低廉的基质,可通过多种化学和生物工艺用于生产燃料和增值化学品,从而促进循环经济的发展,并在未来实现负碳循环。传统的二氧化碳捕集技术存在一些局限性,如资本成本高、能源投入大、设计复杂、二氧化碳泄漏以及各步骤的动力学限制。为了弥补这些局限性和负面影响,本研究评估了新兴二氧化碳捕集与封存(CCS)技术在高附加值产品中的应用,这些产品既能促进国家经济发展、降低能源消耗,又能保护全球环境质量。研究讨论了各种新兴的 CCS 技术,如异相催化转化、等离子体技术、光催化转化和其他技术(电化学或电催化、光电化学、热催化、生物化学和辐射分解),以实现二氧化碳的高效利用和转化。此外,还探讨了各种转化技术如何影响增值化学品/燃料的特性、经济价值和质量。本综述还从科学角度阐述了环境和经济影响,最后讨论了未来展望和相关挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oxidative dehydrogenation of ethane to ethylene with CO2 via Mg-Al spinel catalysts: Insight into dehydrogenation mechanism Methane and CO2 consumption from a synthetic waste gas by microbial communities in enriched seawater Addressing solar power curtailment by integrating flexible direct air capture Single-component and binary H2O and CO2 co-adsorption isotherm model on amine-functionalised Mg-Al mixed metal oxides Carbonated waste paste calcined clay cement with enhanced CO2 mineralization and early strength
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1