Hamid Zentou , Bosirul Hoque , Mahmoud A. Abdalla , Ahmed F. Saber , Omar Y. Abdelaziz , Mansur Aliyu , Abdullah M. Alkhedhair , Abdullah J. Alabduly , Mahmoud M. Abdelnaby
{"title":"Recent advances and challenges in solid sorbents for CO2 capture","authors":"Hamid Zentou , Bosirul Hoque , Mahmoud A. Abdalla , Ahmed F. Saber , Omar Y. Abdelaziz , Mansur Aliyu , Abdullah M. Alkhedhair , Abdullah J. Alabduly , Mahmoud M. Abdelnaby","doi":"10.1016/j.ccst.2025.100386","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon capture is still a crucial technology for lowering CO₂ emissions, especially since fossil fuels persist in supplying a considerable share of global energy needs. Among different capture techniques, solid sorbents like activated carbon, zeolites, metal-organic frameworks (MOFs), and porous organic polymers (POPs) are becoming prominent due to their excellent adsorption effectiveness, durability, and ease of operation. These substances present hopeful substitutes for traditional liquid amine scrubbing by addressing problems like energy-heavy regeneration, corrosion, and elevated solvent expenses. Nonetheless, major obstacles concerning scalability, cost efficiency, and energy demands for regeneration have impeded the broad industrial implementation of adsorption-based carbon capture. This review offers an extensive assessment of recent progress in solid sorbent technology, outlining the enhancement of material characteristics, functionalization methods, and synthesis processes that improve CO₂ capture efficiency. Furthermore, the document highlights the significance of thermodynamic stability, sorbent selectivity, and impurity tolerance to enhance adsorption efficiency in various operating conditions. This review seeks to offer a framework for tackling the technical and economic difficulties linked to these materials through a mix of experimental techniques, and techno-economic assessments. In conclusion, the knowledge acquired in this context aims to guide the creation and implementation of scalable, energy-efficient adsorption-based carbon capture technologies, facilitating their successful application in industrial settings and aiding worldwide CO₂ mitigation initiatives.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100386"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon capture is still a crucial technology for lowering CO₂ emissions, especially since fossil fuels persist in supplying a considerable share of global energy needs. Among different capture techniques, solid sorbents like activated carbon, zeolites, metal-organic frameworks (MOFs), and porous organic polymers (POPs) are becoming prominent due to their excellent adsorption effectiveness, durability, and ease of operation. These substances present hopeful substitutes for traditional liquid amine scrubbing by addressing problems like energy-heavy regeneration, corrosion, and elevated solvent expenses. Nonetheless, major obstacles concerning scalability, cost efficiency, and energy demands for regeneration have impeded the broad industrial implementation of adsorption-based carbon capture. This review offers an extensive assessment of recent progress in solid sorbent technology, outlining the enhancement of material characteristics, functionalization methods, and synthesis processes that improve CO₂ capture efficiency. Furthermore, the document highlights the significance of thermodynamic stability, sorbent selectivity, and impurity tolerance to enhance adsorption efficiency in various operating conditions. This review seeks to offer a framework for tackling the technical and economic difficulties linked to these materials through a mix of experimental techniques, and techno-economic assessments. In conclusion, the knowledge acquired in this context aims to guide the creation and implementation of scalable, energy-efficient adsorption-based carbon capture technologies, facilitating their successful application in industrial settings and aiding worldwide CO₂ mitigation initiatives.