Adaptive distributed unknown input observer for linear systems

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-30 DOI:10.1016/j.amc.2024.129027
Dan-Dan Zhou , Ran Zhao
{"title":"Adaptive distributed unknown input observer for linear systems","authors":"Dan-Dan Zhou ,&nbsp;Ran Zhao","doi":"10.1016/j.amc.2024.129027","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the adaptive distributed unknown input observer (ADUIO) for linear systems with local outputs, which contains a group of local observers under directed graph. The difficulty is the adaptive estimation of global output for the systems with unknown inputs. To solve the problem, disturbance decoupling principle and leader-following consensus strategy are integrated to estimate local outputs of other observers, which can be accumulated to recover the global outputs. Based on the estimated global outputs, an ADUIO is constructed to estimate the full state which avoids using local output matrices of other observers and global information of the graph. Different from the extensive joint detectability assumption in existing results, a detectability assumption is given to make the estimation errors converge to zero asymptotically.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004880","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the adaptive distributed unknown input observer (ADUIO) for linear systems with local outputs, which contains a group of local observers under directed graph. The difficulty is the adaptive estimation of global output for the systems with unknown inputs. To solve the problem, disturbance decoupling principle and leader-following consensus strategy are integrated to estimate local outputs of other observers, which can be accumulated to recover the global outputs. Based on the estimated global outputs, an ADUIO is constructed to estimate the full state which avoids using local output matrices of other observers and global information of the graph. Different from the extensive joint detectability assumption in existing results, a detectability assumption is given to make the estimation errors converge to zero asymptotically.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性系统的自适应分布式未知输入观测器
本文研究了具有局部输出的线性系统的自适应分布式未知输入观测器(ADUIO),该观测器包含一组有向图下的局部观测器。其难点在于对未知输入系统的全局输出进行自适应估计。为了解决这个问题,我们将干扰解耦原理和领导者-跟随者共识策略结合起来,以估计其他观测器的局部输出,并将其累积以恢复全局输出。根据估计的全局输出,构建 ADUIO 来估计完整状态,从而避免使用其他观测器的局部输出矩阵和图的全局信息。与现有成果中广泛的联合可探测性假设不同,本文给出了一个可探测性假设,使估计误差渐近地趋于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1