{"title":"Experimental investigation of a new defrosting technique for sustainable refrigeration system","authors":"","doi":"10.1016/j.tsep.2024.102849","DOIUrl":null,"url":null,"abstract":"<div><p>Defrosting can have a detrimental impact on the functioning of regularly used refrigeration systems. The primary objective of this study is to enhance the cooling efficiency by resolving the defrost process, which impacts the cooling performance due to the heat received from the system. A new solar PVT-assisted system, which includes a cold chamber, was created and tested for this specific purpose. Furthermore, a sophisticated automation scenario has been devised to function in five distinct modes, ensuring the successful execution of the defrost process. Two experiments, Experiment 1 and Experiment 2, were conducted. The average coefficient of performance (COP) and exergy values obtained were 2.29 and 2.25, and 25.74 % and 24.45 %, respectively. The maximum temperature change measured in the cold room during defrosting was 2 °C. In Experiment 1, the PVT collector produced a total energy of 2.85 kWh; Experiment 2 generated 2.79 kWh. Consequently, the defrosting procedure was effectively executed by directing hot air into the chilly chamber using the proposed sustainable method. This system is highly recommended because of its innovative defrosting mechanism, which guarantees optimal solar energy utilization.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924004670","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Defrosting can have a detrimental impact on the functioning of regularly used refrigeration systems. The primary objective of this study is to enhance the cooling efficiency by resolving the defrost process, which impacts the cooling performance due to the heat received from the system. A new solar PVT-assisted system, which includes a cold chamber, was created and tested for this specific purpose. Furthermore, a sophisticated automation scenario has been devised to function in five distinct modes, ensuring the successful execution of the defrost process. Two experiments, Experiment 1 and Experiment 2, were conducted. The average coefficient of performance (COP) and exergy values obtained were 2.29 and 2.25, and 25.74 % and 24.45 %, respectively. The maximum temperature change measured in the cold room during defrosting was 2 °C. In Experiment 1, the PVT collector produced a total energy of 2.85 kWh; Experiment 2 generated 2.79 kWh. Consequently, the defrosting procedure was effectively executed by directing hot air into the chilly chamber using the proposed sustainable method. This system is highly recommended because of its innovative defrosting mechanism, which guarantees optimal solar energy utilization.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.