Meihua Wang, Jing Su, Xinyi Han, Xingzhu Deng, Nan Peng, Lei Liu
{"title":"Changes in Daytime Cirrus Properties From the ISCCP-H Data Set and Their Impacts on the Radiation Energy Budget","authors":"Meihua Wang, Jing Su, Xinyi Han, Xingzhu Deng, Nan Peng, Lei Liu","doi":"10.1029/2023EA003352","DOIUrl":null,"url":null,"abstract":"<p>The change in clouds during the day is critical to the Earth's energy balance and climatic evolution. However, there have been relatively few studies on cloud variations at daily timescales, owing to limitations of ground- and satellite-observations, especially for cirrus clouds. In this study, we examined the daytime cirrus variation (DCV) at the global scales and its associated effects on radiation budgets based on the International Satellite Cloud Climatology Project H data set. The changes in continental cirrus cover are more significant than that over the ocean, reaching a maximum of 17.3% in the afternoon. Over the tropical deep convection regions, cirrus cloud cover and optical depth exhibit large amplitudes during the daytime, closely linked to average properties of cirrus clouds. Using a process-based radiative transfer model, we calculated the variations in daytime cirrus cloud radiative forcing (CRF). After noon, cirrus clouds over both land and ocean generate the strongest shortwave (SW) cooling and longwave (LW) warming effects at the top of the atmosphere (TOA). At the global scale, daytime cirrus clouds cause an average net CRF of 3.6 W/m<sup>2</sup> at the TOA. If the DCV is neglected in the model, the SW cooling and LW warming effects are overestimated by 2.5 and 1.8 W/m<sup>2</sup> at the TOA, leading to a net radiation bias of 0.7 W/m<sup>2</sup>. The findings provide key information for targeting specific aspects of the cirrus parameterization scheme in climate models.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003352","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003352","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The change in clouds during the day is critical to the Earth's energy balance and climatic evolution. However, there have been relatively few studies on cloud variations at daily timescales, owing to limitations of ground- and satellite-observations, especially for cirrus clouds. In this study, we examined the daytime cirrus variation (DCV) at the global scales and its associated effects on radiation budgets based on the International Satellite Cloud Climatology Project H data set. The changes in continental cirrus cover are more significant than that over the ocean, reaching a maximum of 17.3% in the afternoon. Over the tropical deep convection regions, cirrus cloud cover and optical depth exhibit large amplitudes during the daytime, closely linked to average properties of cirrus clouds. Using a process-based radiative transfer model, we calculated the variations in daytime cirrus cloud radiative forcing (CRF). After noon, cirrus clouds over both land and ocean generate the strongest shortwave (SW) cooling and longwave (LW) warming effects at the top of the atmosphere (TOA). At the global scale, daytime cirrus clouds cause an average net CRF of 3.6 W/m2 at the TOA. If the DCV is neglected in the model, the SW cooling and LW warming effects are overestimated by 2.5 and 1.8 W/m2 at the TOA, leading to a net radiation bias of 0.7 W/m2. The findings provide key information for targeting specific aspects of the cirrus parameterization scheme in climate models.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.