Pseudomorphic synthesis of pore size-tunable mesoporous silica spherical particles and their application for the fraction of low-molecular-weight heparin
Yang Zhao, Jie Li, Yang Yang, Yujie Bi, Changyu Cai, Yanxiong Ke
{"title":"Pseudomorphic synthesis of pore size-tunable mesoporous silica spherical particles and their application for the fraction of low-molecular-weight heparin","authors":"Yang Zhao, Jie Li, Yang Yang, Yujie Bi, Changyu Cai, Yanxiong Ke","doi":"10.1002/jssc.202400367","DOIUrl":null,"url":null,"abstract":"<p>In this study, spherical silica with pore size varied from 30 to 200 Å was synthesized by pseudomorphic transformation at atmospheric pressure. 40–80 Å silica particles with a narrow pore distribution were obtained by using quaternary amine cationic surfactants and different kinds of swelling agents, including polypropylene glycol, 1,3,5-trimethylbenzene, alkanes, and alkanols. Alkyl imidazolium ionic liquid surfactants were used to synthesize large pore size distribution silica spheres with pore sizes in the range of 110–200 Å. All these silica particles can be synthesized under mild conditions within 12 h, which provides a facile synthesis method for the preparation of a chromatographic matrix with tunable pore size. The method is reproducible and the relative standard deviation of silica sphere pore structure parameters in scaled-up preparations is less than 6%. The pore size on the fraction of low-molecular-weight heparin (LMWH) was investigated in size exclusion chromatography. Matrixes with different pore size distributions have various size exclusion regions. By using UPS-60-Diol columns in a twin-column recirculation separation process, LMWH with >85% heparin with molecular weight within the range of 3000–8000 Da were separated in five-column volumes.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 17","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400367","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, spherical silica with pore size varied from 30 to 200 Å was synthesized by pseudomorphic transformation at atmospheric pressure. 40–80 Å silica particles with a narrow pore distribution were obtained by using quaternary amine cationic surfactants and different kinds of swelling agents, including polypropylene glycol, 1,3,5-trimethylbenzene, alkanes, and alkanols. Alkyl imidazolium ionic liquid surfactants were used to synthesize large pore size distribution silica spheres with pore sizes in the range of 110–200 Å. All these silica particles can be synthesized under mild conditions within 12 h, which provides a facile synthesis method for the preparation of a chromatographic matrix with tunable pore size. The method is reproducible and the relative standard deviation of silica sphere pore structure parameters in scaled-up preparations is less than 6%. The pore size on the fraction of low-molecular-weight heparin (LMWH) was investigated in size exclusion chromatography. Matrixes with different pore size distributions have various size exclusion regions. By using UPS-60-Diol columns in a twin-column recirculation separation process, LMWH with >85% heparin with molecular weight within the range of 3000–8000 Da were separated in five-column volumes.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.