Zhihan Zhang, Weiyuan Gong, Weikang Li, Dong-Ling Deng
{"title":"Quantum-classical separations in shallow-circuit-based learning with and without noises","authors":"Zhihan Zhang, Weiyuan Gong, Weikang Li, Dong-Ling Deng","doi":"10.1038/s42005-024-01783-7","DOIUrl":null,"url":null,"abstract":"An essential problem in quantum machine learning is to find quantum-classical separations between learning models. However, rigorous and unconditional separations are lacking for supervised learning. Here we construct a classification problem defined by a noiseless constant depth (i.e., shallow) quantum circuit and rigorously prove that any classical neural network with bounded connectivity requires logarithmic depth to output correctly with a larger-than-exponentially-small probability. This unconditional near-optimal quantum-classical representation power separation originates from the quantum nonlocality property that distinguishes quantum circuits from their classical counterparts. We further characterize the noise regimes for demonstrating such a separation on near-term quantum devices under the depolarization noise model. In addition, for quantum devices with constant noise strength, we prove that no super-polynomial classical-quantum separation exists for any classification task defined by Clifford circuits, independent of the structures of the circuits that specify the learning models. An essential problem in quantum machine learning is to find quantum-classical separations between learning models. The authors construct a classification problem based on constant depth quantum circuit to rigorously prove that such a separation exists in terms of representation power, and further characterize the noise regimes for the separation to exist.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01783-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01783-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An essential problem in quantum machine learning is to find quantum-classical separations between learning models. However, rigorous and unconditional separations are lacking for supervised learning. Here we construct a classification problem defined by a noiseless constant depth (i.e., shallow) quantum circuit and rigorously prove that any classical neural network with bounded connectivity requires logarithmic depth to output correctly with a larger-than-exponentially-small probability. This unconditional near-optimal quantum-classical representation power separation originates from the quantum nonlocality property that distinguishes quantum circuits from their classical counterparts. We further characterize the noise regimes for demonstrating such a separation on near-term quantum devices under the depolarization noise model. In addition, for quantum devices with constant noise strength, we prove that no super-polynomial classical-quantum separation exists for any classification task defined by Clifford circuits, independent of the structures of the circuits that specify the learning models. An essential problem in quantum machine learning is to find quantum-classical separations between learning models. The authors construct a classification problem based on constant depth quantum circuit to rigorously prove that such a separation exists in terms of representation power, and further characterize the noise regimes for the separation to exist.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.