Advances in bioengineered CAR T/NK cell therapy for glioblastoma: Overcoming immunosuppression and nanotechnology‐based strategies for enhanced CAR T/NK cell therapy
{"title":"Advances in bioengineered CAR T/NK cell therapy for glioblastoma: Overcoming immunosuppression and nanotechnology‐based strategies for enhanced CAR T/NK cell therapy","authors":"Nasim Dana, Arezou Dabiri, Majed Bahri Najafi, Azadeh Rahimi, Sayed Mohammad Matin Ishaghi, Laleh Shariati, Minmin Shao, Assunta Borzacchiello, Ilnaz Rahimmanesh, Pooyan Makvandi","doi":"10.1002/btm2.10716","DOIUrl":null,"url":null,"abstract":"Glioblastoma is a strong challenge in the worldwide field of central nervous system malignancies. GBM's inherent heterogeneity, along with the formation of an immunosuppressive tumor microenvironment, supports its resistance to current therapy methods. Immunotherapeutic methods have emerged as potential options in recent years. However, because of the inherent limits of traditional immunotherapeutic techniques innovative approaches are required. Advances in cut‐edge techniques provide a possible route for improving effector cell effectiveness. This review gives insight into the complicated immunosuppressive pathways in GBM, with a particular emphasis on CAR T/NK‐cell treatment as a potential achievement. Recognizing and addressing these concerns might open the way for more effective and focused glioblastoma therapies, providing hope for the future with the aim of improved outcomes for patients. In addition, this review presents valuable insights into the integration of nanotechnology into CAR T/NK cell therapy for enhanced efficiency of these personalized gene therapy products.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.10716","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma is a strong challenge in the worldwide field of central nervous system malignancies. GBM's inherent heterogeneity, along with the formation of an immunosuppressive tumor microenvironment, supports its resistance to current therapy methods. Immunotherapeutic methods have emerged as potential options in recent years. However, because of the inherent limits of traditional immunotherapeutic techniques innovative approaches are required. Advances in cut‐edge techniques provide a possible route for improving effector cell effectiveness. This review gives insight into the complicated immunosuppressive pathways in GBM, with a particular emphasis on CAR T/NK‐cell treatment as a potential achievement. Recognizing and addressing these concerns might open the way for more effective and focused glioblastoma therapies, providing hope for the future with the aim of improved outcomes for patients. In addition, this review presents valuable insights into the integration of nanotechnology into CAR T/NK cell therapy for enhanced efficiency of these personalized gene therapy products.
胶质母细胞瘤生物工程 CAR T/NK 细胞疗法的进展:克服免疫抑制和基于纳米技术的增强 CAR T/NK 细胞疗法策略
胶质母细胞瘤是世界范围内中枢神经系统恶性肿瘤领域的一个严峻挑战。胶质母细胞瘤固有的异质性以及免疫抑制性肿瘤微环境的形成,使其对目前的治疗方法产生了抗药性。近年来,免疫治疗方法已成为潜在的选择。然而,由于传统的免疫治疗技术存在固有的局限性,因此需要创新的方法。尖端技术的进步为提高效应细胞的有效性提供了可能的途径。本综述深入探讨了 GBM 复杂的免疫抑制途径,并特别强调了 CAR T/NK 细胞治疗这一潜在成果。认识并解决这些问题可能会为更有效、更有针对性的胶质母细胞瘤疗法开辟道路,为未来带来希望,从而改善患者的预后。此外,本综述还就如何将纳米技术融入 CAR T/NK 细胞疗法以提高这些个性化基因治疗产品的效率提出了宝贵的见解。
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.