Ad fontes: divergence-time estimation and the age of angiosperms

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-08-28 DOI:10.1111/nph.20076
Stephen A. Smith, Jeremy M. Beaulieu
{"title":"Ad fontes: divergence-time estimation and the age of angiosperms","authors":"Stephen A. Smith, Jeremy M. Beaulieu","doi":"10.1111/nph.20076","DOIUrl":null,"url":null,"abstract":"Accurate divergence times are essential for interpreting and understanding the context in which lineages have evolved. Over the past several decades, debates have surrounded the discrepancies between the inferred molecular ages of crown angiosperms, often estimated from the Late Jurassic into the Permian, and the fossil record, placing angiosperms in the Early Cretaceous. That crown angiosperms could have emerged as early as the Permian or even the Triassic would have major implications for the paleoecological context of the origin of one of the most consequential clades in the tree of life. Here, we argue, and demonstrate through simulations, that the older ages inferred from molecular data and relaxed-clock models are misled by lineage-specific rate heterogeneity resulting from life history changes that occurred several times throughout the evolution of vascular plants. To overcome persistent discrepancies in age estimates, more biologically informed and realistic models should be developed, and our results should be considered in the context of their biological implications before we accept inferences that are a major departure from our strongest evidence.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20076","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate divergence times are essential for interpreting and understanding the context in which lineages have evolved. Over the past several decades, debates have surrounded the discrepancies between the inferred molecular ages of crown angiosperms, often estimated from the Late Jurassic into the Permian, and the fossil record, placing angiosperms in the Early Cretaceous. That crown angiosperms could have emerged as early as the Permian or even the Triassic would have major implications for the paleoecological context of the origin of one of the most consequential clades in the tree of life. Here, we argue, and demonstrate through simulations, that the older ages inferred from molecular data and relaxed-clock models are misled by lineage-specific rate heterogeneity resulting from life history changes that occurred several times throughout the evolution of vascular plants. To overcome persistent discrepancies in age estimates, more biologically informed and realistic models should be developed, and our results should be considered in the context of their biological implications before we accept inferences that are a major departure from our strongest evidence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
字体:分歧时间估计和被子植物的年龄
准确的分化时间对于解释和理解世系演化的背景至关重要。在过去的几十年里,冠被子植物的推断分子年龄(通常估计为晚侏罗世到二叠纪)与化石记录(将被子植物置于早白垩世)之间的差异引起了争论。冠被子植物可能早在二叠纪甚至三叠纪就已经出现,这将对生命树中最重要支系之一的起源的古生态背景产生重大影响。在这里,我们通过模拟论证了从分子数据和松弛时钟模型中推断出的较早年龄是被维管束植物进化过程中多次发生的生活史变化所导致的特定世系速率异质性所误导。为了克服年龄估计中持续存在的差异,我们应该开发出更有生物学依据和更现实的模型,并且在接受与我们最有力的证据大相径庭的推论之前,我们应该从其生物学意义的角度来考虑我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
A nitrogen‐responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice The rice orobanchol synthase catalyzes the hydroxylation of the noncanonical strigolactone methyl 4‐oxo‐carlactonoate Streamlined screening platforms lead to the discovery of pachysiphine synthase from Tabernanthe iboga An allometry perspective on crops The small RNA biogenesis in rice is regulated by MAP kinase‐mediated OsCDKD phosphorylation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1