MFF-DTA: Multi-scale feature fusion for drug-target affinity prediction

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Methods Pub Date : 2024-08-30 DOI:10.1016/j.ymeth.2024.08.008
Xiwei Tang , Wanjun Ma , Mengyun Yang , Wenjun Li
{"title":"MFF-DTA: Multi-scale feature fusion for drug-target affinity prediction","authors":"Xiwei Tang ,&nbsp;Wanjun Ma ,&nbsp;Mengyun Yang ,&nbsp;Wenjun Li","doi":"10.1016/j.ymeth.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately predicting drug-target affinity is crucial in expediting the discovery and development of new drugs, which is a complex and risky process. Identifying these interactions not only aids in screening potential compounds but also guides further optimization. To address this, we propose a multi-perspective feature fusion model, MFF-DTA, which integrates chemical structure, biological sequence, and other data to comprehensively capture drug-target affinity features. The MFF-DTA model incorporates multiple feature learning components, each of which is capable of extracting drug molecular features and protein target information, respectively. These components are able to obtain key information from both global and local perspectives. Then, these features from different perspectives are efficiently combined using specific splicing strategies to create a comprehensive representation. Finally, the model uses the fused features to predict drug-target affinity. Comparative experiments show that MFF-DTA performs optimally on the Davis and KIBA data sets. Ablation experiments demonstrate that removing specific components results in the loss of unique information, thus confirming the effectiveness of the MFF-DTA design. Improvements in DTA prediction methods will decrease costs and time in drug development, enhancing industry efficiency and ultimately benefiting patients.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"231 ","pages":"Pages 1-7"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1046202324001890/pdfft?md5=a691264b50021b10f091a9d3d57ce863&pid=1-s2.0-S1046202324001890-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324001890","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting drug-target affinity is crucial in expediting the discovery and development of new drugs, which is a complex and risky process. Identifying these interactions not only aids in screening potential compounds but also guides further optimization. To address this, we propose a multi-perspective feature fusion model, MFF-DTA, which integrates chemical structure, biological sequence, and other data to comprehensively capture drug-target affinity features. The MFF-DTA model incorporates multiple feature learning components, each of which is capable of extracting drug molecular features and protein target information, respectively. These components are able to obtain key information from both global and local perspectives. Then, these features from different perspectives are efficiently combined using specific splicing strategies to create a comprehensive representation. Finally, the model uses the fused features to predict drug-target affinity. Comparative experiments show that MFF-DTA performs optimally on the Davis and KIBA data sets. Ablation experiments demonstrate that removing specific components results in the loss of unique information, thus confirming the effectiveness of the MFF-DTA design. Improvements in DTA prediction methods will decrease costs and time in drug development, enhancing industry efficiency and ultimately benefiting patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MFF-DTA:药物-靶点亲和力预测的多尺度特征融合。
准确预测药物与靶点的亲和力对于加快新药的发现和开发至关重要,而这是一个复杂而又充满风险的过程。识别这些相互作用不仅有助于筛选潜在化合物,还能指导进一步优化。为此,我们提出了一种多视角特征融合模型 MFF-DTA,它整合了化学结构、生物序列和其他数据,以全面捕捉药物-靶点亲和力特征。MFF-DTA 模型包含多个特征学习组件,每个组件都能分别提取药物分子特征和蛋白质靶标信息。这些组件能够从全局和局部两个角度获取关键信息。然后,利用特定的拼接策略将这些来自不同角度的特征有效地结合起来,以创建一个全面的表征。最后,该模型利用融合后的特征来预测药物与靶标的亲和力。对比实验表明,MFF-DTA 在戴维斯和 KIBA 数据集上的表现最佳。消融实验表明,去除特定成分会导致独特信息的丢失,从而证实了 MFF-DTA 设计的有效性。DTA 预测方法的改进将减少药物开发的成本和时间,提高行业效率,最终造福患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
期刊最新文献
A roadmap to cysteine specific labeling of membrane proteins for single-molecule photobleaching studies. In silico identification of Histone Deacetylase inhibitors using Streamlined Masked Transformer-based Pretrained features. Robust feature learning using contractive autoencoders for multi-omics clustering in cancer subtyping Optimizing Retinal Imaging: Evaluation of ultrasmall TiO2 nanoparticle- fluorescein conjugates for improved Fundus Fluorescein Angiography Ab-Amy 2.0: Predicting light chain amyloidogenic risk of therapeutic antibodies based on antibody language model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1