Glucose Oxidase Coupling with Pistol-Like DNAzyme Based Colorimetric Assay for Sensitive Glucose Detection in Tears and Saliva.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2024-08-29 DOI:10.1007/s12010-024-05046-7
Jiaying Fan, Kai Zhou, Jin Wang
{"title":"Glucose Oxidase Coupling with Pistol-Like DNAzyme Based Colorimetric Assay for Sensitive Glucose Detection in Tears and Saliva.","authors":"Jiaying Fan, Kai Zhou, Jin Wang","doi":"10.1007/s12010-024-05046-7","DOIUrl":null,"url":null,"abstract":"<p><p>Non-invasive monitoring of glucose levels in tears and saliva is crucial for diagnosing and predicting various illnesses, such as diabetic nephropathy. However, the capability of the current glucose detection methods to identify small amounts of glucose with a high sensitivity remains a significant obstacle. This study proposes a simple, visual technique for sensitively detecting glucose levels from tears and saliva using glucose oxidase (GOx) to catalyze glucose and pistol-like DNAzyme (PLDz) to enhance the signal. In particular, the β-D-glucose present in the samples serves as the initial molecule that GOx identifies and catalyzes to generate gluconic acid and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). The H<sub>2</sub>O<sub>2</sub> induces the self-cleavage of PLDz, activating the \"part b\" sequence. This activation initiates catalytic hairpin assembly (CHA) and releases the DNAzyme section in the H1 probe. The DNAzyme acts as a peroxidase analog, facilitating the catalysis of the 3,3',5,5'-tetramethylbenzidine (TMB)-hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) system and resulting in color changes. The proposed method exhibits a broad detection range of six orders of magnitude and a low limit of 0.32 μM for glucose detection. Furthermore, the proposed method was highly effective in detecting glucose in saliva and tears, suggesting that it could potentially diagnose hyperglycemia-related disorders in clinical environments.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05046-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive monitoring of glucose levels in tears and saliva is crucial for diagnosing and predicting various illnesses, such as diabetic nephropathy. However, the capability of the current glucose detection methods to identify small amounts of glucose with a high sensitivity remains a significant obstacle. This study proposes a simple, visual technique for sensitively detecting glucose levels from tears and saliva using glucose oxidase (GOx) to catalyze glucose and pistol-like DNAzyme (PLDz) to enhance the signal. In particular, the β-D-glucose present in the samples serves as the initial molecule that GOx identifies and catalyzes to generate gluconic acid and hydrogen peroxide (H2O2). The H2O2 induces the self-cleavage of PLDz, activating the "part b" sequence. This activation initiates catalytic hairpin assembly (CHA) and releases the DNAzyme section in the H1 probe. The DNAzyme acts as a peroxidase analog, facilitating the catalysis of the 3,3',5,5'-tetramethylbenzidine (TMB)-hydrogen peroxide (H2O2) system and resulting in color changes. The proposed method exhibits a broad detection range of six orders of magnitude and a low limit of 0.32 μM for glucose detection. Furthermore, the proposed method was highly effective in detecting glucose in saliva and tears, suggesting that it could potentially diagnose hyperglycemia-related disorders in clinical environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于手枪式 DNA 酶的葡萄糖氧化酶偶联比色法,用于灵敏检测泪液和唾液中的葡萄糖。
无创监测泪液和唾液中的葡萄糖水平对于诊断和预测各种疾病(如糖尿病肾病)至关重要。然而,目前的葡萄糖检测方法无法高灵敏度地识别少量葡萄糖,这仍然是一个重大障碍。本研究提出了一种简单的可视化技术,利用葡萄糖氧化酶(GOx)催化葡萄糖和手枪样 DNA 酶(PLDz)增强信号,灵敏地检测泪液和唾液中的葡萄糖含量。其中,样品中的β-D-葡萄糖是 GOx 识别和催化生成葡萄糖酸和过氧化氢(H2O2)的初始分子。H2O2 会诱导 PLDz 自我裂解,激活 "b 部分 "序列。这种激活启动了催化发夹组装(CHA),并释放出 H1 探针中的 DNA 酶部分。DNA 酶充当过氧化物酶类似物,促进 3,3',5,5'-四甲基联苯胺(TMB)-过氧化氢(H2O2)系统的催化,从而导致颜色变化。该方法的检测范围宽达六个数量级,葡萄糖检测的低限为 0.32 μM。此外,所提出的方法在检测唾液和眼泪中的葡萄糖方面非常有效,这表明它有可能在临床环境中诊断与高血糖有关的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
E2F1 Promotes the Occurrence of Head and Neck Squamous Cell Carcinoma and Serves as a Prognostic Biomarker. Field-Based cDNA-Biosensor for Accurate Detection of Canine Distemper Virus in Tissue Samples. Activation of Cryptic Secondary Metabolite Biosynthesis in Tobacco BY-2 Suspension Cells by Epigenetic Modifiers. Retraction Note: Diterpene Coronarin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Both In Vivo and In Vitro Models. Gynostemma pentaphyllum (Thunb.) Makino Affects Autophagy and Improves Diabetic Peripheral Neuropathy Through TXNIP-Mediated PI3K/AKT/mTOR Signaling Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1