Knockdown of HM13 Inhibits Metastasis, Proliferation, and M2 Macrophage Polarization of Non-small Cell Lung Cancer Cells by Suppressing the JAK2/STAT3 Signaling Pathway.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2024-08-29 DOI:10.1007/s12010-024-05054-7
Dashu Xiao, Hongbin Zhu, Xin Xiao
{"title":"Knockdown of HM13 Inhibits Metastasis, Proliferation, and M2 Macrophage Polarization of Non-small Cell Lung Cancer Cells by Suppressing the JAK2/STAT3 Signaling Pathway.","authors":"Dashu Xiao, Hongbin Zhu, Xin Xiao","doi":"10.1007/s12010-024-05054-7","DOIUrl":null,"url":null,"abstract":"<p><p>An upregulated histocompatibility minor 13 (HM13) has been studied in various tumors, yet the exact mechanism of HM13 in non-small cell lung cancer (NSCLC) is unclear. In view of same, the present study investigates crucial role and action mechanism of HM13 in human NSCLC. HM13 expression was higher in NSCLC tissue and cells through the Western blotting technique along with qRT-PCR. As per data from The Cancer Genome Atlas (TCGA), NSCLC patients having high HM13 expression show lower overall survival. 5-ethynyl-2-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and transwell tests were assessed for NSCLC cell growth, and invasion, and we found that silencing of HM13 inhibited the NSCLC cell proliferation, invasion. Additionally, to investigate the effects of HM13 on THP-1 macrophage polarization, a co-culture model of NSCLC and THP-1 macrophages were used. The CD206 + macrophages were examined using flow cytometry. As the markers of M2 macrophage, the mRNA levels of IL-10 and TGF-β of THP-1 cells were also detected by qRT-PCR. Knockdown of HM13 could inhibit the M2 polarization. Further experiments demonstrated that downregulated HM13 could inhibit the JAK2/STAT3 signaling pathway. RO8191 (activator of JAK/STAT3 pathway) influenced the invasion, proliferation, and expression of JAK2/STAT3 signaling pathway and Epithelial-mesenchymal transition (EMT) markers induced by HM13 silencing. HM13 knockdown also inhibited the tumor growth in vivo by xenograft nude mouse model. By inhibiting JAK2/STAT3 signaling pathway, HM13 knockdown inhibited the NSCLC cell proliferation, metastasis tumor growth, and tumor-associated macrophage M2 polarization. In NSCLC, HM13 could be a therapeutic target to treat the NSCLC.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05054-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An upregulated histocompatibility minor 13 (HM13) has been studied in various tumors, yet the exact mechanism of HM13 in non-small cell lung cancer (NSCLC) is unclear. In view of same, the present study investigates crucial role and action mechanism of HM13 in human NSCLC. HM13 expression was higher in NSCLC tissue and cells through the Western blotting technique along with qRT-PCR. As per data from The Cancer Genome Atlas (TCGA), NSCLC patients having high HM13 expression show lower overall survival. 5-ethynyl-2-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and transwell tests were assessed for NSCLC cell growth, and invasion, and we found that silencing of HM13 inhibited the NSCLC cell proliferation, invasion. Additionally, to investigate the effects of HM13 on THP-1 macrophage polarization, a co-culture model of NSCLC and THP-1 macrophages were used. The CD206 + macrophages were examined using flow cytometry. As the markers of M2 macrophage, the mRNA levels of IL-10 and TGF-β of THP-1 cells were also detected by qRT-PCR. Knockdown of HM13 could inhibit the M2 polarization. Further experiments demonstrated that downregulated HM13 could inhibit the JAK2/STAT3 signaling pathway. RO8191 (activator of JAK/STAT3 pathway) influenced the invasion, proliferation, and expression of JAK2/STAT3 signaling pathway and Epithelial-mesenchymal transition (EMT) markers induced by HM13 silencing. HM13 knockdown also inhibited the tumor growth in vivo by xenograft nude mouse model. By inhibiting JAK2/STAT3 signaling pathway, HM13 knockdown inhibited the NSCLC cell proliferation, metastasis tumor growth, and tumor-associated macrophage M2 polarization. In NSCLC, HM13 could be a therapeutic target to treat the NSCLC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过抑制 JAK2/STAT3 信号通路敲除 HM13 抑制非小细胞肺癌细胞的转移、增殖和 M2 巨噬细胞极化
组织相容性小体 13(HM13)在各种肿瘤中的上调已被研究过,但 HM13 在非小细胞肺癌(NSCLC)中的确切机制尚不清楚。有鉴于此,本研究探讨了 HM13 在人类 NSCLC 中的关键作用和作用机制。通过 Western 印迹技术和 qRT-PCR 检测,HM13 在 NSCLC 组织和细胞中的表达量较高。根据癌症基因组图谱(TCGA)的数据,HM13高表达的NSCLC患者总生存率较低。我们通过5-乙炔基-2-脱氧尿苷(EdU)、细胞计数试剂盒-8(CCK-8)和经孔试验评估了NSCLC细胞的生长和侵袭情况,发现沉默HM13可抑制NSCLC细胞的增殖和侵袭。此外,为了研究 HM13 对 THP-1 巨噬细胞极化的影响,我们使用了 NSCLC 和 THP-1 巨噬细胞共培养模型。使用流式细胞术检测了 CD206 + 巨噬细胞。作为 M2 巨噬细胞的标志物,还通过 qRT-PCR 检测了 THP-1 细胞中 IL-10 和 TGF-β 的 mRNA 水平。敲除 HM13 可抑制 M2 极化。进一步的实验证明,下调 HM13 可抑制 JAK2/STAT3 信号通路。RO8191(JAK/STAT3通路激活剂)影响了HM13沉默诱导的侵袭、增殖、JAK2/STAT3信号通路和上皮-间质转化(EMT)标记物的表达。通过异种移植裸鼠模型,HM13 基因敲除也抑制了肿瘤在体内的生长。通过抑制JAK2/STAT3信号通路,HM13敲除抑制了NSCLC细胞增殖、转移瘤生长和肿瘤相关巨噬细胞M2极化。在NSCLC中,HM13可能是治疗NSCLC的一个靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
E2F1 Promotes the Occurrence of Head and Neck Squamous Cell Carcinoma and Serves as a Prognostic Biomarker. Field-Based cDNA-Biosensor for Accurate Detection of Canine Distemper Virus in Tissue Samples. Activation of Cryptic Secondary Metabolite Biosynthesis in Tobacco BY-2 Suspension Cells by Epigenetic Modifiers. Retraction Note: Diterpene Coronarin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Both In Vivo and In Vitro Models. Gynostemma pentaphyllum (Thunb.) Makino Affects Autophagy and Improves Diabetic Peripheral Neuropathy Through TXNIP-Mediated PI3K/AKT/mTOR Signaling Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1