The reduction of abiotic stress in food crops through climate-smart mycorrhiza-enriched biofertilizer.

IF 2.7 Q3 MICROBIOLOGY AIMS Microbiology Pub Date : 2024-08-21 eCollection Date: 2024-01-01 DOI:10.3934/microbiol.2024031
Mohammad Zahangeer Alam, Malancha Dey Roy
{"title":"The reduction of abiotic stress in food crops through climate-smart mycorrhiza-enriched biofertilizer.","authors":"Mohammad Zahangeer Alam, Malancha Dey Roy","doi":"10.3934/microbiol.2024031","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change enhances stress in food crops. Recently, abiotic stress such as metalloid toxicity, salinity, and drought have increased in food crops. Mycorrhizal fungi can accumulate several nutrients within their hyphae through a symbiotic relationship and release them to cells in the root of the food crops under stress conditions. We have studied arbuscular mycorrhizal fungi (AMF)-enriched biofertilizers as a climate-smart technology option to increase safe and healthy food production under abiotic stress. AMF such as <i>Glomus sp</i>., <i>Rhizophagus sp</i>., <i>Acaulospora morrowiae</i>, <i>Paraglomus occultum</i>, <i>Funneliformis mosseae</i>, and <i>Claroideoglomus etunicatum</i> enhance growth and yield in food crops grown in soils under abiotic stress. AMF also works as a bioremediation material in food crops grown in soil. More precisely, the arsenic concentrations in grains decrease by 57% with AMF application. In addition, AMF increases mineral contents, and antioxidant activities under drought and salinity stress in food crops. Catalase (CAT) and ascorbate peroxidase (APX) increased by 45% and 70% in AMF-treated plants under drought stress. AMF-enriched biofertilizers are used in crop fields like precision agriculture to reduce the demand for chemical fertilizers. Subsequently, AMF-enriched climate-smart biofertilizers increase nutritional quality by reducing abiotic stress in food crops grown in soils. Consequently, a climate resilience environment might be developed using AMF-enriched biofertilizers for sustainable livelihood.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"674-693"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362269/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2024031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change enhances stress in food crops. Recently, abiotic stress such as metalloid toxicity, salinity, and drought have increased in food crops. Mycorrhizal fungi can accumulate several nutrients within their hyphae through a symbiotic relationship and release them to cells in the root of the food crops under stress conditions. We have studied arbuscular mycorrhizal fungi (AMF)-enriched biofertilizers as a climate-smart technology option to increase safe and healthy food production under abiotic stress. AMF such as Glomus sp., Rhizophagus sp., Acaulospora morrowiae, Paraglomus occultum, Funneliformis mosseae, and Claroideoglomus etunicatum enhance growth and yield in food crops grown in soils under abiotic stress. AMF also works as a bioremediation material in food crops grown in soil. More precisely, the arsenic concentrations in grains decrease by 57% with AMF application. In addition, AMF increases mineral contents, and antioxidant activities under drought and salinity stress in food crops. Catalase (CAT) and ascorbate peroxidase (APX) increased by 45% and 70% in AMF-treated plants under drought stress. AMF-enriched biofertilizers are used in crop fields like precision agriculture to reduce the demand for chemical fertilizers. Subsequently, AMF-enriched climate-smart biofertilizers increase nutritional quality by reducing abiotic stress in food crops grown in soils. Consequently, a climate resilience environment might be developed using AMF-enriched biofertilizers for sustainable livelihood.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过气候智能型菌根富集生物肥料减少粮食作物的非生物胁迫。
气候变化加剧了粮食作物的胁迫。近来,粮食作物受到的非生物胁迫(如类金属中毒、盐度和干旱)有所增加。菌根真菌可以通过共生关系在菌丝中积累多种营养物质,并在胁迫条件下释放到粮食作物根部的细胞中。我们研究了富含丛枝菌根真菌(AMF)的生物肥料,将其作为一种气候智能技术选择,以提高非生物胁迫条件下安全健康的粮食产量。Glomus sp.、Rhizophagus sp.、Acaulospora morrowiae、Paraglomus occultum、Funneliformis mosseae 和 Claroideoglomus etunicatum 等菌根真菌可提高非生物胁迫下土壤中粮食作物的生长和产量。AMF 还可作为一种生物修复材料,用于土壤中种植的粮食作物。更确切地说,施用 AMF 后,谷物中的砷浓度降低了 57%。此外,AMF 还能提高粮食作物在干旱和盐碱胁迫下的矿物质含量和抗氧化活性。在干旱胁迫下,AMF 处理过的植物中过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)分别增加了 45% 和 70%。富含 AMF 的生物肥料被用于精准农业等作物领域,以减少对化肥的需求。随后,富含 AMF 的气候智能生物肥料通过减少土壤中种植的粮食作物的非生物压力来提高营养质量。因此,可以利用富含 AMF 的生物肥料为可持续生计创造一个气候复原环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
期刊最新文献
Microbes' role in environmental pollution and remediation: a bioeconomy focus approach. Fungal photoinactivation doses for UV radiation and visible light-a data collection. The reduction of abiotic stress in food crops through climate-smart mycorrhiza-enriched biofertilizer. Marine microfossils: Tiny archives of ocean changes through deep time. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1