Aoife Williamson, Peter Houston, Jennifer Paterson, Anthony J Chalmers, Philip McLoone, Natasha Fullerton, Sin Yee Foo, Allan James, Stefan Nowicki
{"title":"Dosimetric comparison of hippocampal-sparing technologies in patients with low-grade glioma.","authors":"Aoife Williamson, Peter Houston, Jennifer Paterson, Anthony J Chalmers, Philip McLoone, Natasha Fullerton, Sin Yee Foo, Allan James, Stefan Nowicki","doi":"10.1093/noajnl/vdae131","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiotherapy (RT) plays an integral role in the management of low-grade gliomas (LGG). Late toxicity from RT can cause progressive neurocognitive dysfunction. Radiation-induced damage to the hippocampus (HCP) plays a considerable role in memory decline. Advancements in photon planning software have resulted in the development of multi-criteria optimization (MCO) and HyperArc technologies which may improve HCP sparing while maintaining planning target volume (PTV) target coverage.</p><p><strong>Methods: </strong>Three planning methods for hippocampal sparing (HS) were compared, volumetric modulated arc therapy (VMAT) without HS (VMAT_noHS), VMAT with HS (VMAT_HS), MCO with HS (MCO_HS), and HyperArc with HS (HyperArc_HS).</p><p><strong>Results: </strong>Twenty-five patients were identified. The contralateral HCP was spared in 16 patients and bilateral HCP in 9 patients with superiorly located tumors. All 3 HS planning techniques showed significant reductions in dose to the spared HCP in contralateral cases but only VMAT_HS and MCO_HS achieved this in bilateral cases (<i>P</i> < .008). Only MCO_HS was superior to VMAT_HS in lowering the dose to both contralateral HCP and bilateral HCP in all measured metrics (<i>P</i> < .008). PTV and OAR (organ at risk) dose constraints were achieved for all plans.</p><p><strong>Conclusions: </strong>This retrospective dosimetric study demonstrated the feasibility of HS for low-grade glioma. All 3 HS planning techniques achieved significant dose reductions to the spared contralateral hippocampus, but only MCO_HS and VMAT_HS achieved this in bilateral cases. MCO was superior to other planning techniques for sparing both bilateral and contralateral hippocampi.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Radiotherapy (RT) plays an integral role in the management of low-grade gliomas (LGG). Late toxicity from RT can cause progressive neurocognitive dysfunction. Radiation-induced damage to the hippocampus (HCP) plays a considerable role in memory decline. Advancements in photon planning software have resulted in the development of multi-criteria optimization (MCO) and HyperArc technologies which may improve HCP sparing while maintaining planning target volume (PTV) target coverage.
Methods: Three planning methods for hippocampal sparing (HS) were compared, volumetric modulated arc therapy (VMAT) without HS (VMAT_noHS), VMAT with HS (VMAT_HS), MCO with HS (MCO_HS), and HyperArc with HS (HyperArc_HS).
Results: Twenty-five patients were identified. The contralateral HCP was spared in 16 patients and bilateral HCP in 9 patients with superiorly located tumors. All 3 HS planning techniques showed significant reductions in dose to the spared HCP in contralateral cases but only VMAT_HS and MCO_HS achieved this in bilateral cases (P < .008). Only MCO_HS was superior to VMAT_HS in lowering the dose to both contralateral HCP and bilateral HCP in all measured metrics (P < .008). PTV and OAR (organ at risk) dose constraints were achieved for all plans.
Conclusions: This retrospective dosimetric study demonstrated the feasibility of HS for low-grade glioma. All 3 HS planning techniques achieved significant dose reductions to the spared contralateral hippocampus, but only MCO_HS and VMAT_HS achieved this in bilateral cases. MCO was superior to other planning techniques for sparing both bilateral and contralateral hippocampi.