Optimal design and techno-economic analysis of a solar-wind hybrid power system for laayoune city electrification with hydrogen and batteries as a storage device
Abdellah El-Maaroufi , Mohammed Daoudi , Rachid Ahl Laamara
{"title":"Optimal design and techno-economic analysis of a solar-wind hybrid power system for laayoune city electrification with hydrogen and batteries as a storage device","authors":"Abdellah El-Maaroufi , Mohammed Daoudi , Rachid Ahl Laamara","doi":"10.1016/j.pce.2024.103719","DOIUrl":null,"url":null,"abstract":"<div><p>The pressing environmental concerns associated with fossil fuels have propelled renewable energy sources, particularly solar and wind energy, into a more prominent position. This article aims to explore an optimal configuration and conduct a technical and economic analysis of a hybrid solar-wind energy system tailored for electrifying Laayoune city. This system, equipped with hydrogen tank and batteries as storage devices, aims to meet the annual energy requirements of residential areas estimated at 310.87 GWh/year. In addition to addressing energy needs, the study tackles significant challenges such as reducing dependence on traditional energy sources, curbing greenhouse gas emissions, and bolstering energy security in the region. Utilizing HOMER Pro software, the research evaluates various combinations of renewable resources, including solar and wind, alongside storage solutions such as batteries, fuel cells, and hydrogen storage, to find the most viable solution in terms of electricity generation, cost, and environmental impact. The findings highlight a hybrid configuration comprising solar, wind, battery, grid, and converter components as the most cost-effective approach for Laayoune's renewable energy system. This integrated system not only yields an energy cost of 0.0477 $/kWh and a net present cost (NPC) of 336 M$ but also generates 627.69 GWh/year of energy. Furthermore, it achieves a 100% renewable energy ratio while completely eliminating CO<sub>2</sub> emissions.</p></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"136 ","pages":"Article 103719"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524001773","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The pressing environmental concerns associated with fossil fuels have propelled renewable energy sources, particularly solar and wind energy, into a more prominent position. This article aims to explore an optimal configuration and conduct a technical and economic analysis of a hybrid solar-wind energy system tailored for electrifying Laayoune city. This system, equipped with hydrogen tank and batteries as storage devices, aims to meet the annual energy requirements of residential areas estimated at 310.87 GWh/year. In addition to addressing energy needs, the study tackles significant challenges such as reducing dependence on traditional energy sources, curbing greenhouse gas emissions, and bolstering energy security in the region. Utilizing HOMER Pro software, the research evaluates various combinations of renewable resources, including solar and wind, alongside storage solutions such as batteries, fuel cells, and hydrogen storage, to find the most viable solution in terms of electricity generation, cost, and environmental impact. The findings highlight a hybrid configuration comprising solar, wind, battery, grid, and converter components as the most cost-effective approach for Laayoune's renewable energy system. This integrated system not only yields an energy cost of 0.0477 $/kWh and a net present cost (NPC) of 336 M$ but also generates 627.69 GWh/year of energy. Furthermore, it achieves a 100% renewable energy ratio while completely eliminating CO2 emissions.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).