Recent Advances in Nanocatalyzed One-Pot Sustainable Synthesis of Bioactive N, N-Heterocycles with Anticancer Activities: An Outlook of Medicinal Chemistry.
{"title":"Recent Advances in Nanocatalyzed One-Pot Sustainable Synthesis of Bioactive N, N-Heterocycles with Anticancer Activities: An Outlook of Medicinal Chemistry.","authors":"Sasadhar Majhi","doi":"10.2174/0115680266311149240822111827","DOIUrl":null,"url":null,"abstract":"<p><p>N-heterocycles represent a predominant and unique class of organic chemistry. They have received a lot of attention due to their important chemical, biomedical, and industrial uses. Food and Drug Administration (FDA) approved about 75% of drugs containing N-based heterocycles, which are currently available in the market. N-Heterocyclic compounds exist as the backbone of numerous natural products and act as crucial intermediates for the construction of pharmaceuticals, veterinary items, and agrochemicals frequently. Among N-based heterocyclic compounds, bioactive N,N-heterocycles constitute a broad spectrum of applications in modern drug discovery and development processes. Cefozopran (antibiotic), omeprazole (antiulcer), enviradine (antiviral), liarozole (anticancer), etc., are important drugs containing N,N-heterocycles. The synthesis of N,Nheterocyclic compounds under sustainable conditions is one of the most active fields because of their significant physiological and biological properties as well as synthetic utility. Current research is demanding the development of greener, cheaper, and milder protocols for the synthesis of N,N-heterocyclic compounds to save mother nature by avoiding toxic metal catalysts, extensive application of energy, and the excessive use of hazardous materials. Nanocatalysts play a profound role in sustainable synthesis because of their larger surface area, tiny size, and minimum energy; they are eco-friendly and safe, and they provide higher yields with selectivity in comparison to conventional catalysts. It is increasingly demanding research to design and synthesize novel bioactive compounds that may help to combat cancer since the major causes of death worldwide are due to cancer. Hence, the important uses of nanocatalysts for the one-pot synthesis of biologically potent N,N-heterocycles with anticancer activities have been presented in this review.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266311149240822111827","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
N-heterocycles represent a predominant and unique class of organic chemistry. They have received a lot of attention due to their important chemical, biomedical, and industrial uses. Food and Drug Administration (FDA) approved about 75% of drugs containing N-based heterocycles, which are currently available in the market. N-Heterocyclic compounds exist as the backbone of numerous natural products and act as crucial intermediates for the construction of pharmaceuticals, veterinary items, and agrochemicals frequently. Among N-based heterocyclic compounds, bioactive N,N-heterocycles constitute a broad spectrum of applications in modern drug discovery and development processes. Cefozopran (antibiotic), omeprazole (antiulcer), enviradine (antiviral), liarozole (anticancer), etc., are important drugs containing N,N-heterocycles. The synthesis of N,Nheterocyclic compounds under sustainable conditions is one of the most active fields because of their significant physiological and biological properties as well as synthetic utility. Current research is demanding the development of greener, cheaper, and milder protocols for the synthesis of N,N-heterocyclic compounds to save mother nature by avoiding toxic metal catalysts, extensive application of energy, and the excessive use of hazardous materials. Nanocatalysts play a profound role in sustainable synthesis because of their larger surface area, tiny size, and minimum energy; they are eco-friendly and safe, and they provide higher yields with selectivity in comparison to conventional catalysts. It is increasingly demanding research to design and synthesize novel bioactive compounds that may help to combat cancer since the major causes of death worldwide are due to cancer. Hence, the important uses of nanocatalysts for the one-pot synthesis of biologically potent N,N-heterocycles with anticancer activities have been presented in this review.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.