Multimodal Activity of a Novel Compound against Prostate and Pancreatic Cancer.

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL Current topics in medicinal chemistry Pub Date : 2025-03-19 DOI:10.2174/0115680266351687250309020134
Flaviana Alves Dos Santos, Joelson Germano Crispim, Eduardo Davi Lima da Silva, Arsênio Rodrigues Oliveira, Aldilane Gonçalves da Fonseca, Telma Maria Araújo Moura Lemos, Ana Cristina Lima Leite, Michelle Melgarejo da Rosa, Maira Galdino da Rocha Pitta, Michelly Cristiny Pereira, Ivan Rocha Pitta, Moacyr Jesus Barreto de Melo Rêgo
{"title":"Multimodal Activity of a Novel Compound against Prostate and Pancreatic Cancer.","authors":"Flaviana Alves Dos Santos, Joelson Germano Crispim, Eduardo Davi Lima da Silva, Arsênio Rodrigues Oliveira, Aldilane Gonçalves da Fonseca, Telma Maria Araújo Moura Lemos, Ana Cristina Lima Leite, Michelle Melgarejo da Rosa, Maira Galdino da Rocha Pitta, Michelly Cristiny Pereira, Ivan Rocha Pitta, Moacyr Jesus Barreto de Melo Rêgo","doi":"10.2174/0115680266351687250309020134","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prostate and pancreatic cancers pose significant global health challenges. This study explored the potential of compound 5b, a novel phthalimido-1,3-thiazole derivative, as an anticancer agent against these malignancies.</p><p><strong>Methods: </strong>In vitro, compound 5b exhibited potent cytotoxic activity against both prostate (DU-145 and PC-3) and pancreatic (Panc-1 and Mia Paca-2) cancer cell lines. Notably, it significantly reduced colony formation in PC-3 cells, potentially hindering tumor growth. Furthermore, treatment with compound 5b suppressed cell migration and induced cell cycle arrest in the PC-3 line. Additionally, it triggered cell death through late apoptosis and necrosis at higher concentrations. Safety evaluations in mice revealed no mortality or adverse effects after a 30-day treatment with compound 5b. Key blood parameters (hematology) and biochemical markers of liver and kidney function remained unaltered.</p><p><strong>Results: </strong>Compound 5b significantly reduced colony formation, suppressed cell migration, and induced cell cycle arrest and apoptosis/necrosis in prostate cancer cells. In vivo, safety evaluations showed no adverse effects in treated mice, with blood and biochemical markers remaining normal.</p><p><strong>Conclusion: </strong>These findings suggest that compound 5b holds promise for further development as a therapeutic option for prostate and pancreatic cancers. Its multimodal activity profile, targeting cell viability, migration, cell cycle progression, and cell death, warrants further investigation.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266351687250309020134","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Prostate and pancreatic cancers pose significant global health challenges. This study explored the potential of compound 5b, a novel phthalimido-1,3-thiazole derivative, as an anticancer agent against these malignancies.

Methods: In vitro, compound 5b exhibited potent cytotoxic activity against both prostate (DU-145 and PC-3) and pancreatic (Panc-1 and Mia Paca-2) cancer cell lines. Notably, it significantly reduced colony formation in PC-3 cells, potentially hindering tumor growth. Furthermore, treatment with compound 5b suppressed cell migration and induced cell cycle arrest in the PC-3 line. Additionally, it triggered cell death through late apoptosis and necrosis at higher concentrations. Safety evaluations in mice revealed no mortality or adverse effects after a 30-day treatment with compound 5b. Key blood parameters (hematology) and biochemical markers of liver and kidney function remained unaltered.

Results: Compound 5b significantly reduced colony formation, suppressed cell migration, and induced cell cycle arrest and apoptosis/necrosis in prostate cancer cells. In vivo, safety evaluations showed no adverse effects in treated mice, with blood and biochemical markers remaining normal.

Conclusion: These findings suggest that compound 5b holds promise for further development as a therapeutic option for prostate and pancreatic cancers. Its multimodal activity profile, targeting cell viability, migration, cell cycle progression, and cell death, warrants further investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
期刊最新文献
Multimodal Activity of a Novel Compound against Prostate and Pancreatic Cancer. Ethnobotanical Study of Knowledge and Herbal Recipes of Medicinal Plants in Ancient Izki, Al Dakhliya Region, Sultanate of Oman. Inflecting Factors on Alzheimer's Disease Progression: The Interaction of Gut Microbiome, Oxidative Stress, and Nutritional Interventions. Natural Compounds and their Nano-formulations in Combating Autophagy-mediated Drug Resistance in Human Cancers. Antimicrobial Plant Peptides: Structure, Classification, Mechanism And Therapeutic Potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1