Sleep During the COVID-19 Pandemic: Longitudinal Observational Study Combining Multisensor Data With Questionnaires.

IF 5.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES JMIR mHealth and uHealth Pub Date : 2024-09-03 DOI:10.2196/53389
Nguyen Luong, Gloria Mark, Juhi Kulshrestha, Talayeh Aledavood
{"title":"Sleep During the COVID-19 Pandemic: Longitudinal Observational Study Combining Multisensor Data With Questionnaires.","authors":"Nguyen Luong, Gloria Mark, Juhi Kulshrestha, Talayeh Aledavood","doi":"10.2196/53389","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The COVID-19 pandemic prompted various containment strategies, such as work-from-home policies and reduced social contact, which significantly altered people's sleep routines. While previous studies have highlighted the negative impacts of these restrictions on sleep, they often lack a comprehensive perspective that considers other factors, such as seasonal variations and physical activity (PA), which can also influence sleep.</p><p><strong>Objective: </strong>This study aims to longitudinally examine the detailed changes in sleep patterns among working adults during the COVID-19 pandemic using a combination of repeated questionnaires and high-resolution passive measurements from wearable sensors. We investigate the association between sleep and 5 sets of variables: (1) demographics; (2) sleep-related habits; (3) PA behaviors; and external factors, including (4) pandemic-specific constraints and (5) seasonal variations during the study period.</p><p><strong>Methods: </strong>We recruited working adults in Finland for a 1-year study (June 2021-June 2022) conducted during the late stage of the COVID-19 pandemic. We collected multisensor data from fitness trackers worn by participants, as well as work and sleep-related measures through monthly questionnaires. Additionally, we used the Stringency Index for Finland at various points in time to estimate the degree of pandemic-related lockdown restrictions during the study period. We applied linear mixed models to examine changes in sleep patterns during this late stage of the pandemic and their association with the 5 sets of variables.</p><p><strong>Results: </strong>The sleep patterns of 27,350 nights from 112 working adults were analyzed. Stricter pandemic measures were associated with an increase in total sleep time (TST) (β=.003, 95% CI 0.001-0.005; P<.001) and a delay in midsleep (MS) (β=.02, 95% CI 0.02-0.03; P<.001). Individuals who tend to snooze exhibited greater variability in both TST (β=.15, 95% CI 0.05-0.27; P=.006) and MS (β=.17, 95% CI 0.03-0.31; P=.01). Occupational differences in sleep pattern were observed, with service staff experiencing longer TST (β=.37, 95% CI 0.14-0.61; P=.004) and lower variability in TST (β=-.15, 95% CI -0.27 to -0.05; P<.001). Engaging in PA later in the day was associated with longer TST (β=.03, 95% CI 0.02-0.04; P<.001) and less variability in TST (β=-.01, 95% CI -0.02 to 0.00; P=.02). Higher intradaily variability in rest activity rhythm was associated with shorter TST (β=-.26, 95% CI -0.29 to -0.23; P<.001), earlier MS (β=-.29, 95% CI -0.33 to -0.26; P<.001), and reduced variability in TST (β=-.16, 95% CI -0.23 to -0.09; P<.001).</p><p><strong>Conclusions: </strong>Our study provided a comprehensive view of the factors affecting sleep patterns during the late stage of the pandemic. As we navigate the future of work after the pandemic, understanding how work arrangements, lifestyle choices, and sleep quality interact will be crucial for optimizing well-being and performance in the workforce.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"12 ","pages":"e53389"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408889/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/53389","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The COVID-19 pandemic prompted various containment strategies, such as work-from-home policies and reduced social contact, which significantly altered people's sleep routines. While previous studies have highlighted the negative impacts of these restrictions on sleep, they often lack a comprehensive perspective that considers other factors, such as seasonal variations and physical activity (PA), which can also influence sleep.

Objective: This study aims to longitudinally examine the detailed changes in sleep patterns among working adults during the COVID-19 pandemic using a combination of repeated questionnaires and high-resolution passive measurements from wearable sensors. We investigate the association between sleep and 5 sets of variables: (1) demographics; (2) sleep-related habits; (3) PA behaviors; and external factors, including (4) pandemic-specific constraints and (5) seasonal variations during the study period.

Methods: We recruited working adults in Finland for a 1-year study (June 2021-June 2022) conducted during the late stage of the COVID-19 pandemic. We collected multisensor data from fitness trackers worn by participants, as well as work and sleep-related measures through monthly questionnaires. Additionally, we used the Stringency Index for Finland at various points in time to estimate the degree of pandemic-related lockdown restrictions during the study period. We applied linear mixed models to examine changes in sleep patterns during this late stage of the pandemic and their association with the 5 sets of variables.

Results: The sleep patterns of 27,350 nights from 112 working adults were analyzed. Stricter pandemic measures were associated with an increase in total sleep time (TST) (β=.003, 95% CI 0.001-0.005; P<.001) and a delay in midsleep (MS) (β=.02, 95% CI 0.02-0.03; P<.001). Individuals who tend to snooze exhibited greater variability in both TST (β=.15, 95% CI 0.05-0.27; P=.006) and MS (β=.17, 95% CI 0.03-0.31; P=.01). Occupational differences in sleep pattern were observed, with service staff experiencing longer TST (β=.37, 95% CI 0.14-0.61; P=.004) and lower variability in TST (β=-.15, 95% CI -0.27 to -0.05; P<.001). Engaging in PA later in the day was associated with longer TST (β=.03, 95% CI 0.02-0.04; P<.001) and less variability in TST (β=-.01, 95% CI -0.02 to 0.00; P=.02). Higher intradaily variability in rest activity rhythm was associated with shorter TST (β=-.26, 95% CI -0.29 to -0.23; P<.001), earlier MS (β=-.29, 95% CI -0.33 to -0.26; P<.001), and reduced variability in TST (β=-.16, 95% CI -0.23 to -0.09; P<.001).

Conclusions: Our study provided a comprehensive view of the factors affecting sleep patterns during the late stage of the pandemic. As we navigate the future of work after the pandemic, understanding how work arrangements, lifestyle choices, and sleep quality interact will be crucial for optimizing well-being and performance in the workforce.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19 大流行期间的睡眠:结合多传感器数据和问卷调查的纵向观察研究。
背景:COVID-19大流行引发了各种遏制策略,如在家工作政策和减少社会接触,这极大地改变了人们的睡眠习惯。虽然以往的研究强调了这些限制对睡眠的负面影响,但这些研究往往缺乏全面的视角,没有考虑到其他因素,如季节变化和体育活动(PA),这些因素也会影响睡眠:本研究旨在采用重复问卷调查和可穿戴传感器的高分辨率被动测量相结合的方法,纵向研究 COVID-19 大流行期间工作成人睡眠模式的详细变化。我们调查了睡眠与 5 组变量之间的关联:(1)人口统计学;(2)与睡眠相关的习惯;(3)PA 行为;以及外部因素,包括(4)大流行的特定限制因素和(5)研究期间的季节性变化:在 COVID-19 大流行的后期阶段,我们招募了芬兰的工作成年人进行为期 1 年的研究(2021 年 6 月至 2022 年 6 月)。我们通过参与者佩戴的健身追踪器收集了多传感器数据,并通过每月问卷调查收集了与工作和睡眠相关的测量数据。此外,我们还使用了不同时间点的芬兰严格指数来估算研究期间与大流行相关的封锁限制程度。我们采用线性混合模型来研究大流行后期睡眠模式的变化及其与 5 组变量的关联:结果:我们分析了 112 名在职成年人 27,350 个夜晚的睡眠模式。更严格的大流行措施与总睡眠时间(TST)的增加有关(β=.003,95% CI 0.001-0.005;PC结论:我们的研究提供了一个全面的视角:我们的研究全面揭示了大流行后期影响睡眠模式的因素。在我们探索大流行后的未来工作时,了解工作安排、生活方式选择和睡眠质量如何相互作用,对于优化劳动力的福祉和绩效至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR mHealth and uHealth
JMIR mHealth and uHealth Medicine-Health Informatics
CiteScore
12.60
自引率
4.00%
发文量
159
审稿时长
10 weeks
期刊介绍: JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636. The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics. JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.
期刊最新文献
A Remote Patient Monitoring System With Feedback Mechanisms Using a Smartwatch: Concept, Implementation, and Evaluation Based on the activeDCM Randomized Controlled Trial. Implementation of a Technology-Based Mobile Obstetric Referral Emergency System (MORES): Qualitative Assessment of Health Workers in Rural Liberia. Evaluating the Sensitivity of Wearable Devices in Posttranscatheter Aortic Valve Implantation Functional Assessment. Using a Quality-Controlled Dataset From ViSi Mobile Monitoring for Analyzing Posture Patterns of Hospitalized Patients: Retrospective Observational Study. Validity of a Consumer-Based Wearable to Measure Clinical Parameters in Patients With Chronic Obstructive Pulmonary Disease and Healthy Controls: Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1