Robin De Croon, Daniela Segovia-Lizano, Paul Finglas, Vero Vanden Abeele, Katrien Verbert
{"title":"An Explanation Interface for Healthy Food Recommendations in a Real-Life Workplace Deployment: User-Centered Design Study.","authors":"Robin De Croon, Daniela Segovia-Lizano, Paul Finglas, Vero Vanden Abeele, Katrien Verbert","doi":"10.2196/51271","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite widespread awareness of healthy eating principles, many individuals struggle to translate this knowledge into consistent, sustainable dietary change. Food recommender systems, increasingly used in various settings, offer the potential for personalized guidance and behavior change support. However, traditional approaches may prioritize user preferences or popularity metrics without sufficiently considering long-term nutritional goals. This can inadvertently reinforce unhealthy eating patterns. Emerging research suggests that incorporating explanations into recommender systems can increase transparency, promote informed decision-making, and potentially influence food choices. Yet, the effectiveness of explanations in promoting healthy choices within complex, real-world food environments remain largely unexplored.</p><p><strong>Objective: </strong>This study aims to investigate the design, implementation, and preliminary evaluation of a food recommender system that integrates explanations in a real-world food catering application. We seek to understand how such a system can promote healthy choices while addressing the inherent tensions between user control, meal variety, and the need for nutritionally sound recommendations. Specifically, our objectives are to (1) identify and prioritize key design considerations for food recommenders that balance personalization, nutritional guidance, and user experience; and (2) conduct a proof-of-principle study in a real-life setting to assess the system's effect on user understanding, trust, and potentially on dietary choices.</p><p><strong>Methods: </strong>An iterative, user-centered design process guided the development and refinement of the system across 4 phases: (Phase 0) an exploratory qualitative study (N=26) to understand stakeholder needs and initial system impressions, (Phases 1 and 2) rapid prototyping in real-life deployments (N=45 and N=16, respectively) to iteratively improve usability and features, and (Phase 3) a proof-of-principle study with employees (N=136) to evaluate a set of design goals. We collected a mix of data, including usage logs, pre- and post-study questionnaires, in-app feedback, and a pre- and post-Food Frequency Questionnaire to establish nutritional profiles.</p><p><strong>Results: </strong>Although we experienced a high drop-out (77% after 7 weeks), motivated and remaining participants valued personalization features, particularly the ability to configure allergies and lifestyle preferences. Explanations increased understanding of recommendations and created a sense of control, even when preferences and healthy options did not fully align. However, a mismatch persisted between individual preferences and nutritionally optimal recommendations. This highlights the design challenge of balancing user control, meal variety, and the promotion of healthy eating.</p><p><strong>Conclusions: </strong>Integrating explanations into personalized food recommender systems might be promising for supporting healthier food choices and creating a more informed understanding of dietary patterns. Our findings could highlight the importance of balancing user control with both the practical limitations of food service settings and the need for nutritionally sound recommendations. While fully resolving the tension between immediate preferences and long-term health goals is an ongoing challenge, explanations can play a crucial role in promoting more conscious decision-making.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"13 ","pages":"e51271"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/51271","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Despite widespread awareness of healthy eating principles, many individuals struggle to translate this knowledge into consistent, sustainable dietary change. Food recommender systems, increasingly used in various settings, offer the potential for personalized guidance and behavior change support. However, traditional approaches may prioritize user preferences or popularity metrics without sufficiently considering long-term nutritional goals. This can inadvertently reinforce unhealthy eating patterns. Emerging research suggests that incorporating explanations into recommender systems can increase transparency, promote informed decision-making, and potentially influence food choices. Yet, the effectiveness of explanations in promoting healthy choices within complex, real-world food environments remain largely unexplored.
Objective: This study aims to investigate the design, implementation, and preliminary evaluation of a food recommender system that integrates explanations in a real-world food catering application. We seek to understand how such a system can promote healthy choices while addressing the inherent tensions between user control, meal variety, and the need for nutritionally sound recommendations. Specifically, our objectives are to (1) identify and prioritize key design considerations for food recommenders that balance personalization, nutritional guidance, and user experience; and (2) conduct a proof-of-principle study in a real-life setting to assess the system's effect on user understanding, trust, and potentially on dietary choices.
Methods: An iterative, user-centered design process guided the development and refinement of the system across 4 phases: (Phase 0) an exploratory qualitative study (N=26) to understand stakeholder needs and initial system impressions, (Phases 1 and 2) rapid prototyping in real-life deployments (N=45 and N=16, respectively) to iteratively improve usability and features, and (Phase 3) a proof-of-principle study with employees (N=136) to evaluate a set of design goals. We collected a mix of data, including usage logs, pre- and post-study questionnaires, in-app feedback, and a pre- and post-Food Frequency Questionnaire to establish nutritional profiles.
Results: Although we experienced a high drop-out (77% after 7 weeks), motivated and remaining participants valued personalization features, particularly the ability to configure allergies and lifestyle preferences. Explanations increased understanding of recommendations and created a sense of control, even when preferences and healthy options did not fully align. However, a mismatch persisted between individual preferences and nutritionally optimal recommendations. This highlights the design challenge of balancing user control, meal variety, and the promotion of healthy eating.
Conclusions: Integrating explanations into personalized food recommender systems might be promising for supporting healthier food choices and creating a more informed understanding of dietary patterns. Our findings could highlight the importance of balancing user control with both the practical limitations of food service settings and the need for nutritionally sound recommendations. While fully resolving the tension between immediate preferences and long-term health goals is an ongoing challenge, explanations can play a crucial role in promoting more conscious decision-making.
期刊介绍:
JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636.
The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics.
JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.