{"title":"Improving the forecast accuracy of wind power by leveraging multiple hierarchical structure","authors":"Lucas English , Mahdi Abolghasemi","doi":"10.1016/j.segan.2024.101517","DOIUrl":null,"url":null,"abstract":"<div><p>Renewable energy generation is of utmost importance for global decarbonization. Forecasting renewable energies, particularly wind energy, is challenging due to the inherent uncertainty in wind energy generation, which depends on weather conditions. Recent advances in hierarchical forecasting through reconciliation have demonstrated a significant increase in the quality of wind energy forecasts for short-term periods. We leverage the cross-sectional and temporal hierarchical structure of turbines in wind farms and build cross-temporal hierarchies to further investigate how integrated cross-sectional and temporal dimensions can add value to forecast accuracy in wind farms. We found that cross-temporal reconciliation was superior to individual cross-sectional reconciliation at multiple temporal aggregations. Additionally, machine learning based forecasts that were cross-temporally reconciled demonstrated high accuracy at coarser temporal granularities, which may encourage adoption for short-term wind forecasts. Empirically, we provide insights for decision-makers on the best methods for forecasting high-frequency wind data across different forecasting horizons and levels.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"40 ","pages":"Article 101517"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002467","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Renewable energy generation is of utmost importance for global decarbonization. Forecasting renewable energies, particularly wind energy, is challenging due to the inherent uncertainty in wind energy generation, which depends on weather conditions. Recent advances in hierarchical forecasting through reconciliation have demonstrated a significant increase in the quality of wind energy forecasts for short-term periods. We leverage the cross-sectional and temporal hierarchical structure of turbines in wind farms and build cross-temporal hierarchies to further investigate how integrated cross-sectional and temporal dimensions can add value to forecast accuracy in wind farms. We found that cross-temporal reconciliation was superior to individual cross-sectional reconciliation at multiple temporal aggregations. Additionally, machine learning based forecasts that were cross-temporally reconciled demonstrated high accuracy at coarser temporal granularities, which may encourage adoption for short-term wind forecasts. Empirically, we provide insights for decision-makers on the best methods for forecasting high-frequency wind data across different forecasting horizons and levels.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.