The clearing strategy of primary frequency control ancillary services market from the point of view ISO in the presence of synchronous generations and virtual power plants based on responsive loads
{"title":"The clearing strategy of primary frequency control ancillary services market from the point of view ISO in the presence of synchronous generations and virtual power plants based on responsive loads","authors":"Saeideh Ranginkaman, Elaheh Mashhour, Mohsen Saniei","doi":"10.1016/j.segan.2024.101566","DOIUrl":null,"url":null,"abstract":"<div><div>Since the increase in penetration of renewable energy sources connected to the system reduces the inertia of power systems, the penetration of these sources leads to increase in the requirements of primary frequency control (PFC) services. Fortunately, with the expansion of network intelligence platforms, responsive loads (RL) can be effectively useful in ancillary services in the near future and can be used like traditional power plants. Since these equipment have a high rate of change of status, if they are visible in the market by aggregating (with virtual power plant (VPP)), they can compete with synchronous generations (SG). Because the response speed of the participants in the market can affect the decision independent system operator (ISO) in determining the winning units, therefore in this article, we have proposed a market framework to create competition between SGs and VPPs in providing ancillary services. In the proposed framework, ISO minimizes the weighted sum of power purchase costs from VPPs and SGs. The proposed weighting coefficients express the response speed of each unit. In fact, the desired objective function is affected by two terms, cost and speed. The presented model has been simulated on a test system including four SGs units and one VPP unit in matrix laboratory (MATLAB) software and checked under five different scenarios. The comparison of the obtained results indicates an increase in the possibility of accepting units with a smaller weighting factor and a higher response speed (the meaning of accepting units are market players, i.e. SGs and VPPs).</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"40 ","pages":"Article 101566"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002960","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Since the increase in penetration of renewable energy sources connected to the system reduces the inertia of power systems, the penetration of these sources leads to increase in the requirements of primary frequency control (PFC) services. Fortunately, with the expansion of network intelligence platforms, responsive loads (RL) can be effectively useful in ancillary services in the near future and can be used like traditional power plants. Since these equipment have a high rate of change of status, if they are visible in the market by aggregating (with virtual power plant (VPP)), they can compete with synchronous generations (SG). Because the response speed of the participants in the market can affect the decision independent system operator (ISO) in determining the winning units, therefore in this article, we have proposed a market framework to create competition between SGs and VPPs in providing ancillary services. In the proposed framework, ISO minimizes the weighted sum of power purchase costs from VPPs and SGs. The proposed weighting coefficients express the response speed of each unit. In fact, the desired objective function is affected by two terms, cost and speed. The presented model has been simulated on a test system including four SGs units and one VPP unit in matrix laboratory (MATLAB) software and checked under five different scenarios. The comparison of the obtained results indicates an increase in the possibility of accepting units with a smaller weighting factor and a higher response speed (the meaning of accepting units are market players, i.e. SGs and VPPs).
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.