Dong Ye , Kai Zhu , Yiwei Zhang , Jingyi Feng , Shujie Gao , Xiaoxiang Wang , Ke Wu
{"title":"Tailoring the proceeding of the NH3-SCO and NH3-SCR reactions over FeOx catalysts by modifying with NbOx","authors":"Dong Ye , Kai Zhu , Yiwei Zhang , Jingyi Feng , Shujie Gao , Xiaoxiang Wang , Ke Wu","doi":"10.1016/j.joei.2024.101814","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the synthesis of a series of FeO<sub><em>x</em></sub>-NbO<sub><em>x</em></sub> mixed oxide catalysts for the selective catalytic reduction (SCR) of NO by NH<sub>3</sub>. By meticulously controlling the Fe/Nb molar ratio, we have rationally tailored the proceeding of the main reaction of NO reduction and the side reaction of NH<sub>3</sub> oxidation to NO<sub><em>x</em></sub>. The incorporation of NbO<sub><em>x</em></sub> introduced a significant number of acid sites, which enhanced the adsorption of NH<sub>3</sub> on the catalyst surface, particularly at elevated temperatures. Additionally, the oxidative capacity of the catalyst was moderated by the addition of NbO<sub><em>x</em></sub>, hindering the over-oxidation of NH<sub>3</sub> to NO or NO<sub>2</sub>, thus preserving more NH<sub>3</sub> to act as a reductant for NO reduction. Consequently, the NbO<sub><em>x</em></sub>-enriched samples exhibited improved deNO<sub><em>x</em></sub> performance. However, an excessive amount of NbO<sub><em>x</em></sub> led to a notably weakened oxidative ability, which negatively impacted the activation of reactants and resulted in decreased NO conversion at lower temperatures. The optimized catalyst presented >80 % NO conversion and >95 % N<sub>2</sub> selectivity within a temperature range of 250–400 °C. These findings offer valuable insights for the development of new catalysts with an extended operational temperature window.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101814"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002927","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the synthesis of a series of FeOx-NbOx mixed oxide catalysts for the selective catalytic reduction (SCR) of NO by NH3. By meticulously controlling the Fe/Nb molar ratio, we have rationally tailored the proceeding of the main reaction of NO reduction and the side reaction of NH3 oxidation to NOx. The incorporation of NbOx introduced a significant number of acid sites, which enhanced the adsorption of NH3 on the catalyst surface, particularly at elevated temperatures. Additionally, the oxidative capacity of the catalyst was moderated by the addition of NbOx, hindering the over-oxidation of NH3 to NO or NO2, thus preserving more NH3 to act as a reductant for NO reduction. Consequently, the NbOx-enriched samples exhibited improved deNOx performance. However, an excessive amount of NbOx led to a notably weakened oxidative ability, which negatively impacted the activation of reactants and resulted in decreased NO conversion at lower temperatures. The optimized catalyst presented >80 % NO conversion and >95 % N2 selectivity within a temperature range of 250–400 °C. These findings offer valuable insights for the development of new catalysts with an extended operational temperature window.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.