Shichao Ding, Tamoghna Saha, Lu Yin, Ruixiao Liu, Muhammad Inam Khan, An-Yi Chang, Hyungjin Lee, Han Zhao, Yuanzhe Liu, Ariane Sina Nazemi, Jiachi Zhou, Chuanrui Chen, Zhengxing Li, Chenyang Zhang, Sara Earney, Selene Tang, Omeed Djassemi, Xiangjun Chen, Muyang Lin, Samar S. Sandhu, Jong-Min Moon, Chochanon Moonla, Ponnusamy Nandhakumar, Youngmin Park, Kuldeep Mahato, Sheng Xu, Joseph Wang
{"title":"A fingertip-wearable microgrid system for autonomous energy management and metabolic monitoring","authors":"Shichao Ding, Tamoghna Saha, Lu Yin, Ruixiao Liu, Muhammad Inam Khan, An-Yi Chang, Hyungjin Lee, Han Zhao, Yuanzhe Liu, Ariane Sina Nazemi, Jiachi Zhou, Chuanrui Chen, Zhengxing Li, Chenyang Zhang, Sara Earney, Selene Tang, Omeed Djassemi, Xiangjun Chen, Muyang Lin, Samar S. Sandhu, Jong-Min Moon, Chochanon Moonla, Ponnusamy Nandhakumar, Youngmin Park, Kuldeep Mahato, Sheng Xu, Joseph Wang","doi":"10.1038/s41928-024-01236-7","DOIUrl":null,"url":null,"abstract":"Wearable health monitoring platforms require advanced sensing modalities with integrated electronics. However, current systems suffer from limitations related to energy supply, sensing capabilities, circuitry regulations and large form factors. Here, we report an autonomous and continuous sweat sensing system that operates on a fingertip. The system uses a self-voltage-regulated wearable microgrid based on enzymatic biofuel cells and AgCl-Zn batteries to harvest and store bioenergy from sweat, respectively. It relies on osmosis to continuously supply sweat to the sensor array for on-demand multi-metabolite sensing and is combined with low-power electronics for signal acquisition and wireless data transmission. The wearable system is powered solely by fingertip perspiration and can detect glucose, vitamin C, lactate and levodopa over extended periods of time. A wearable microgrid powered solely by fingertip perspiration can monitor metabolic biomarkers over extended periods of time.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"788-799"},"PeriodicalIF":33.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01236-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable health monitoring platforms require advanced sensing modalities with integrated electronics. However, current systems suffer from limitations related to energy supply, sensing capabilities, circuitry regulations and large form factors. Here, we report an autonomous and continuous sweat sensing system that operates on a fingertip. The system uses a self-voltage-regulated wearable microgrid based on enzymatic biofuel cells and AgCl-Zn batteries to harvest and store bioenergy from sweat, respectively. It relies on osmosis to continuously supply sweat to the sensor array for on-demand multi-metabolite sensing and is combined with low-power electronics for signal acquisition and wireless data transmission. The wearable system is powered solely by fingertip perspiration and can detect glucose, vitamin C, lactate and levodopa over extended periods of time. A wearable microgrid powered solely by fingertip perspiration can monitor metabolic biomarkers over extended periods of time.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.