A fingertip-wearable microgrid system for autonomous energy management and metabolic monitoring

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Nature Electronics Pub Date : 2024-09-03 DOI:10.1038/s41928-024-01236-7
Shichao Ding, Tamoghna Saha, Lu Yin, Ruixiao Liu, Muhammad Inam Khan, An-Yi Chang, Hyungjin Lee, Han Zhao, Yuanzhe Liu, Ariane Sina Nazemi, Jiachi Zhou, Chuanrui Chen, Zhengxing Li, Chenyang Zhang, Sara Earney, Selene Tang, Omeed Djassemi, Xiangjun Chen, Muyang Lin, Samar S. Sandhu, Jong-Min Moon, Chochanon Moonla, Ponnusamy Nandhakumar, Youngmin Park, Kuldeep Mahato, Sheng Xu, Joseph Wang
{"title":"A fingertip-wearable microgrid system for autonomous energy management and metabolic monitoring","authors":"Shichao Ding, Tamoghna Saha, Lu Yin, Ruixiao Liu, Muhammad Inam Khan, An-Yi Chang, Hyungjin Lee, Han Zhao, Yuanzhe Liu, Ariane Sina Nazemi, Jiachi Zhou, Chuanrui Chen, Zhengxing Li, Chenyang Zhang, Sara Earney, Selene Tang, Omeed Djassemi, Xiangjun Chen, Muyang Lin, Samar S. Sandhu, Jong-Min Moon, Chochanon Moonla, Ponnusamy Nandhakumar, Youngmin Park, Kuldeep Mahato, Sheng Xu, Joseph Wang","doi":"10.1038/s41928-024-01236-7","DOIUrl":null,"url":null,"abstract":"Wearable health monitoring platforms require advanced sensing modalities with integrated electronics. However, current systems suffer from limitations related to energy supply, sensing capabilities, circuitry regulations and large form factors. Here, we report an autonomous and continuous sweat sensing system that operates on a fingertip. The system uses a self-voltage-regulated wearable microgrid based on enzymatic biofuel cells and AgCl-Zn batteries to harvest and store bioenergy from sweat, respectively. It relies on osmosis to continuously supply sweat to the sensor array for on-demand multi-metabolite sensing and is combined with low-power electronics for signal acquisition and wireless data transmission. The wearable system is powered solely by fingertip perspiration and can detect glucose, vitamin C, lactate and levodopa over extended periods of time. A wearable microgrid powered solely by fingertip perspiration can monitor metabolic biomarkers over extended periods of time.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"788-799"},"PeriodicalIF":33.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01236-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable health monitoring platforms require advanced sensing modalities with integrated electronics. However, current systems suffer from limitations related to energy supply, sensing capabilities, circuitry regulations and large form factors. Here, we report an autonomous and continuous sweat sensing system that operates on a fingertip. The system uses a self-voltage-regulated wearable microgrid based on enzymatic biofuel cells and AgCl-Zn batteries to harvest and store bioenergy from sweat, respectively. It relies on osmosis to continuously supply sweat to the sensor array for on-demand multi-metabolite sensing and is combined with low-power electronics for signal acquisition and wireless data transmission. The wearable system is powered solely by fingertip perspiration and can detect glucose, vitamin C, lactate and levodopa over extended periods of time. A wearable microgrid powered solely by fingertip perspiration can monitor metabolic biomarkers over extended periods of time.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自主能源管理和代谢监测的指尖可穿戴式微电网系统
可穿戴健康监测平台需要先进的传感模式和集成电子设备。然而,目前的系统在能源供应、传感能力、电路规范和外形尺寸等方面受到限制。在此,我们报告了一种在指尖上运行的自主连续汗液传感系统。该系统使用基于酶生物燃料电池和 AgCl-Zn 电池的自电压调节可穿戴微电网,分别从汗液中收集和储存生物能。它依靠渗透作用向传感器阵列持续提供汗液,以按需进行多代谢物传感,并结合低功耗电子设备进行信号采集和无线数据传输。该可穿戴系统仅靠指尖汗液供电,可长时间检测葡萄糖、维生素 C、乳酸和左旋多巴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
期刊最新文献
Build it up again Wood-based electronics that fold Integration of high-κ native oxides of gallium for two-dimensional transistors Hearable devices with sound bubbles Piezoelectric biomaterials printed on the fly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1