Kongyang Yi, Wen Qin, Yamin Huang, Yao Wu, Shaopeng Feng, Qiyi Fang, Xun Cao, Ya Deng, Chao Zhu, Xilu Zou, Kah-Wee Ang, Taotao Li, Xinran Wang, Jun Lou, Keji Lai, Zhili Hu, Zhuhua Zhang, Yemin Dong, Kourosh Kalantar-Zadeh, Zheng Liu
{"title":"Integration of high-κ native oxides of gallium for two-dimensional transistors","authors":"Kongyang Yi, Wen Qin, Yamin Huang, Yao Wu, Shaopeng Feng, Qiyi Fang, Xun Cao, Ya Deng, Chao Zhu, Xilu Zou, Kah-Wee Ang, Taotao Li, Xinran Wang, Jun Lou, Keji Lai, Zhili Hu, Zhuhua Zhang, Yemin Dong, Kourosh Kalantar-Zadeh, Zheng Liu","doi":"10.1038/s41928-024-01286-x","DOIUrl":null,"url":null,"abstract":"<p>The deposition of a metal oxide layer with good dielectric properties is a critical step in fabricating the gate dielectric of transistors based on two-dimensional semiconductors. However, current techniques for depositing ultrathin metal oxide layers on two-dimensional semiconductors suffer from quality issues that can compromise transistor performance. Here, we show that an ultrathin and uniform native oxide of gallium (Ga<sub>2</sub>O<sub>3</sub>) that naturally forms on the surface of liquid metals in an ambient environment can be prepared on the surface of molybdenum disulfide (MoS<sub>2</sub>) by squeeze-printing and surface-tension-driven methods. The Ga<sub>2</sub>O<sub>3</sub> layer possesses a high dielectric constant of around 30 and equivalent oxide thickness of around 0.4 nm. Due to the good dielectric properties and van der Waals integration, MoS<sub>2</sub> transistors with Ga<sub>2</sub>O<sub>3</sub> gate dielectrics exhibit a subthreshold swing down to 60 mV dec<sup>−1</sup>, an on/off ratio of 10<sup>8</sup> and a gate leakage down to around 4 × 10<sup>−7</sup> A cm<sup>−2</sup>.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"154 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01286-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The deposition of a metal oxide layer with good dielectric properties is a critical step in fabricating the gate dielectric of transistors based on two-dimensional semiconductors. However, current techniques for depositing ultrathin metal oxide layers on two-dimensional semiconductors suffer from quality issues that can compromise transistor performance. Here, we show that an ultrathin and uniform native oxide of gallium (Ga2O3) that naturally forms on the surface of liquid metals in an ambient environment can be prepared on the surface of molybdenum disulfide (MoS2) by squeeze-printing and surface-tension-driven methods. The Ga2O3 layer possesses a high dielectric constant of around 30 and equivalent oxide thickness of around 0.4 nm. Due to the good dielectric properties and van der Waals integration, MoS2 transistors with Ga2O3 gate dielectrics exhibit a subthreshold swing down to 60 mV dec−1, an on/off ratio of 108 and a gate leakage down to around 4 × 10−7 A cm−2.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.