Characterization of Ucp1-iCre knockin mice reveals the recombination activity in male germ cells.

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM American journal of physiology. Endocrinology and metabolism Pub Date : 2024-10-01 Epub Date: 2024-09-04 DOI:10.1152/ajpendo.00128.2024
Meng-Yue Li, Ming Lu, Dong-Mei Cao, Qing Han, Xian-Hua Ma, Chun-Chun Wei, Weiping J Zhang
{"title":"Characterization of Ucp1-iCre knockin mice reveals the recombination activity in male germ cells.","authors":"Meng-Yue Li, Ming Lu, Dong-Mei Cao, Qing Han, Xian-Hua Ma, Chun-Chun Wei, Weiping J Zhang","doi":"10.1152/ajpendo.00128.2024","DOIUrl":null,"url":null,"abstract":"<p><p><i>Ucp1</i> promoter-driven Cre transgenic mice are useful in the manipulation of gene expression specifically in thermogenic adipose tissues. However, the wildly used Ucp1-Cre line was generated by random insertion into the genome and showed ectopic activity in some tissues beyond adipose tissues. Here, we characterized a knockin mouse line Ucp1-iCre generated by targeting IRES-Cre cassette immediately downstream the stop codon of the <i>Ucp1</i> gene. The Cre insertion had little to no effect on uncoupling protein 1 (UCP1) levels in brown adipose tissue. Ucp1-iCre mice of both genders exhibited normal thermogenesis and cold tolerance. When crossed with Rosa-tdTomato reporter mice, Ucp1-iCre mice showed robust Cre activity in thermogenic adipose tissues. In addition, limited Cre activity was sparsely present in the ventromedial hypothalamus (VMH), choroid plexus, kidney, adrenal glands, ovary, and testis in Ucp1-iCre mice, albeit to a much lesser extent and with reduced intensity compared with the conventional Ucp1-Cre line. Single-cell transcriptome analysis revealed <i>Ucp1</i> mRNA expression in male spermatocytes. Moreover, male Ucp1-iCre mice displayed a high frequency of Cre-mediated recombination in the germline, whereas no such effect was observed in female Ucp1-iCre mice. These findings suggest that Ucp1-iCre mice offer promising utility in the context of conditional gene manipulation in thermogenic adipose tissues, while also highlighting the need for caution in mouse mating and genotyping procedures.<b>NEW & NOTEWORTHY</b> <i>Ucp1</i> promoter-driven Cre transgenic mice are useful in the manipulation of gene expression specifically in thermogenic adipose tissues. The widely used Ucp1-Cre mouse line (Ucp1-Cre<sup>Evdr</sup>), which was generated using the bacterial artificial chromosome (BAC) strategy, exhibits major brown and white fat transcriptomic dysregulation and ectopic activity beyond adipose tissues. Here, we comprehensively validate Ucp1-iCre knockin mice, which serve as another optional model besides Ucp1-Cre<sup>Evdr</sup> mice for specific genetic manipulation in thermogenic tissue.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E544-E551"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00128.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Ucp1 promoter-driven Cre transgenic mice are useful in the manipulation of gene expression specifically in thermogenic adipose tissues. However, the wildly used Ucp1-Cre line was generated by random insertion into the genome and showed ectopic activity in some tissues beyond adipose tissues. Here, we characterized a knockin mouse line Ucp1-iCre generated by targeting IRES-Cre cassette immediately downstream the stop codon of the Ucp1 gene. The Cre insertion had little to no effect on uncoupling protein 1 (UCP1) levels in brown adipose tissue. Ucp1-iCre mice of both genders exhibited normal thermogenesis and cold tolerance. When crossed with Rosa-tdTomato reporter mice, Ucp1-iCre mice showed robust Cre activity in thermogenic adipose tissues. In addition, limited Cre activity was sparsely present in the ventromedial hypothalamus (VMH), choroid plexus, kidney, adrenal glands, ovary, and testis in Ucp1-iCre mice, albeit to a much lesser extent and with reduced intensity compared with the conventional Ucp1-Cre line. Single-cell transcriptome analysis revealed Ucp1 mRNA expression in male spermatocytes. Moreover, male Ucp1-iCre mice displayed a high frequency of Cre-mediated recombination in the germline, whereas no such effect was observed in female Ucp1-iCre mice. These findings suggest that Ucp1-iCre mice offer promising utility in the context of conditional gene manipulation in thermogenic adipose tissues, while also highlighting the need for caution in mouse mating and genotyping procedures.NEW & NOTEWORTHY Ucp1 promoter-driven Cre transgenic mice are useful in the manipulation of gene expression specifically in thermogenic adipose tissues. The widely used Ucp1-Cre mouse line (Ucp1-CreEvdr), which was generated using the bacterial artificial chromosome (BAC) strategy, exhibits major brown and white fat transcriptomic dysregulation and ectopic activity beyond adipose tissues. Here, we comprehensively validate Ucp1-iCre knockin mice, which serve as another optional model besides Ucp1-CreEvdr mice for specific genetic manipulation in thermogenic tissue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ucp1-iCre 基因敲除小鼠的特征揭示了雄性生殖细胞的重组活动
Ucp1启动子驱动的Cre转基因小鼠可用于特异性操纵致热脂肪组织中的基因表达。然而,普遍使用的 Ucp1-Cre 系是通过随机插入基因组产生的,在脂肪组织以外的一些组织中表现出异位活性。在这里,我们描述了一种基因敲除小鼠品系 Ucp1-iCre 的特征,该品系是通过在 Ucp1 基因的终止密码子下游插入 IRES-Cre 盒而产生的。Cre 插入对棕色脂肪组织中的 UCP1 蛋白水平几乎没有影响。Ucp1-iCre 小鼠的雌雄均表现出正常的产热和耐寒能力。当与 Rosa-tdTomato 报告小鼠杂交时,Ucp1-iCre 小鼠在产热脂肪组织中表现出强大的 Cre 活性。此外,在 Ucp1-iCre 小鼠的下丘脑(VMH)、脉络丛、肾脏、肾上腺、卵巢和睾丸中也稀疏存在有限的 Cre 活性,但与传统的 Ucp1-Cre 株系相比,Cre 活性的程度和强度要低得多。单细胞转录组分析显示,雄性精母细胞中有 UCP1 mRNA 表达。此外,雄性 Ucp1-iCre 小鼠种系中 Cre 介导的重组频率很高,而雌性 Ucp1-iCre 小鼠则没有这种现象。这些研究结果表明,Ucp1-iCre小鼠在发热脂肪组织的条件基因操作方面具有广阔的应用前景,同时也强调了在小鼠交配和基因分型过程中需要谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
期刊最新文献
Circulating interleukin-33 levels in obesity and type 2 diabetes: a systematic review and meta-analysis. Arginine vasopressin induces analgesic effects and inhibits pyramidal cells in the anterior cingulate cortex in spared nerve injured mice. Metabolic shifts in ratio of ucOcn to cOcn toward bone resorption contribute to age-dependent bone loss in male mice. Postnatal surge of adipose-secreted leptin is a robust predictor of fat mass trajectory in mice. Adipose tissue insulin resistance in children and adolescents: linking glucose and free fatty acid metabolism to hepatic injury markers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1