Kaja Falkenhain, Tomas Cabeza de Baca, Emma J Stinson, Eric Ravussin, Paolo Piaggi, Jonathan Krakoff, Leanne M Redman
{"title":"The Effect of a Leptin Phenotype on Weight Change and Energy Expenditure Responses to Acute and Prolonged Energetic Stressors.","authors":"Kaja Falkenhain, Tomas Cabeza de Baca, Emma J Stinson, Eric Ravussin, Paolo Piaggi, Jonathan Krakoff, Leanne M Redman","doi":"10.1152/ajpendo.00067.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Leptin is a hormone produced by adipocytes that plays a crucial role in regulating energy homeostasis and body mass. Despite its close correlation with body fat, up to ~40% of variation in plasma leptin concentration remains unexplained, allowing for the classification of a distinct \"leptin phenotype\". This leptin phenotype - characterized by either relatively high or relatively low leptin concentration relative to an individual's level of body fat - presents an intriguing opportunity to test whether relatively higher (compared to lower) leptin concentrations differentially affect energy expenditure, metabolic adaptation, and susceptibility to weight change in response to energy balance perturbations. To test this hypothesis, we characterized the energy expenditure and weight change response between the two leptin phenotypes (relatively high vs low) using three distinct experimental contexts; a cross-sectional analysis (N=104), acute (24-hour) perturbations with fasting and overfeeding (N=77), and chronic perturbations with 24-month caloric restriction (N=144) or 8-week overfeeding (N=28). Leptin phenotype did not explain variations in energy expenditure responses either in cross-sectional analyses or in response to acute or prolonged energetic stressors. Moreover, leptin phenotype was not a determinant of weight change in response to energy restriction or surplus, or subsequent weight recovery. These results suggest that classifying individuals based upon a leptin phenotype does not allow to detect differential susceptibility to energy expenditure adaptations or weight change.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00067.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Leptin is a hormone produced by adipocytes that plays a crucial role in regulating energy homeostasis and body mass. Despite its close correlation with body fat, up to ~40% of variation in plasma leptin concentration remains unexplained, allowing for the classification of a distinct "leptin phenotype". This leptin phenotype - characterized by either relatively high or relatively low leptin concentration relative to an individual's level of body fat - presents an intriguing opportunity to test whether relatively higher (compared to lower) leptin concentrations differentially affect energy expenditure, metabolic adaptation, and susceptibility to weight change in response to energy balance perturbations. To test this hypothesis, we characterized the energy expenditure and weight change response between the two leptin phenotypes (relatively high vs low) using three distinct experimental contexts; a cross-sectional analysis (N=104), acute (24-hour) perturbations with fasting and overfeeding (N=77), and chronic perturbations with 24-month caloric restriction (N=144) or 8-week overfeeding (N=28). Leptin phenotype did not explain variations in energy expenditure responses either in cross-sectional analyses or in response to acute or prolonged energetic stressors. Moreover, leptin phenotype was not a determinant of weight change in response to energy restriction or surplus, or subsequent weight recovery. These results suggest that classifying individuals based upon a leptin phenotype does not allow to detect differential susceptibility to energy expenditure adaptations or weight change.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.