David J Schneider, Heidi S Taatjes-Sommer, Peter M DiBattiste, Kanwal S Palla, Tyler Shovah, Subhanip Biswas, Jeanne Ohrnberger
{"title":"Assessing prognosis by quantifying FcγRIIa on fixed platelets.","authors":"David J Schneider, Heidi S Taatjes-Sommer, Peter M DiBattiste, Kanwal S Palla, Tyler Shovah, Subhanip Biswas, Jeanne Ohrnberger","doi":"10.1080/17576180.2024.2395706","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> FcγRIIa amplifies platelet activation and higher platelet FcγRIIa identifies patients at greater risk of subsequent cardiovascular events. We report the accuracy and precision of a modified test to quantify FcγRIIa on previously fixed platelets (pFCG test).<b>Methods & results:</b> An antibody clone (5G1) was developed after exposure of mice to formaldehyde treated FcγRIIa. Accuracy and precision of the modified test was evaluated with biologic specimens (platelets) and engineered synthetic cells conjugated with FcγRIIa (Slingshot Biosciences). The modified pFCG test on fixed platelets (using 5G1) consistently identified modestly more (∼300 molecules) of FcγRIIa on platelets compared with the pFCG test on nonfixed platelets (using clone FL18.26). With biologic specimens, the intra-assay coefficient of variation (CV) was 2.1 ± 0.1% (standard error of the mean, n = 750). The interassay CV was assessed intraday (4.5 ± 1%) and interday (up to 5 days after fixation, 6.5 ± 0.4%, n = 50). The pFCG test performed on Slingshot Synthetic cells conjugated with FcγRIIa demonstrated accuracy, linearity (R<sup>2</sup> = 0.984) and similar interassay CV both intraday (2% ± 0.6%) and interday (20 nonconsecutive days, 9.9% ± 2.1%).<b>Conclusion:</b> In summary, modification of the pFCG test to be performed on fixed platelets allows accurate quantification of pFCG with high precision.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"1025-1032"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2024.2395706","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: FcγRIIa amplifies platelet activation and higher platelet FcγRIIa identifies patients at greater risk of subsequent cardiovascular events. We report the accuracy and precision of a modified test to quantify FcγRIIa on previously fixed platelets (pFCG test).Methods & results: An antibody clone (5G1) was developed after exposure of mice to formaldehyde treated FcγRIIa. Accuracy and precision of the modified test was evaluated with biologic specimens (platelets) and engineered synthetic cells conjugated with FcγRIIa (Slingshot Biosciences). The modified pFCG test on fixed platelets (using 5G1) consistently identified modestly more (∼300 molecules) of FcγRIIa on platelets compared with the pFCG test on nonfixed platelets (using clone FL18.26). With biologic specimens, the intra-assay coefficient of variation (CV) was 2.1 ± 0.1% (standard error of the mean, n = 750). The interassay CV was assessed intraday (4.5 ± 1%) and interday (up to 5 days after fixation, 6.5 ± 0.4%, n = 50). The pFCG test performed on Slingshot Synthetic cells conjugated with FcγRIIa demonstrated accuracy, linearity (R2 = 0.984) and similar interassay CV both intraday (2% ± 0.6%) and interday (20 nonconsecutive days, 9.9% ± 2.1%).Conclusion: In summary, modification of the pFCG test to be performed on fixed platelets allows accurate quantification of pFCG with high precision.
BioanalysisBIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍:
Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing.
The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality.
Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing.
The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques.
Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.