Xinzhuo Zhang, Ruixuan Gao, Yongsheng Zhu, Qiang Tang, Ke Yan, Jun Hong
{"title":"Investigation on dynamic behaviors of the cage in cylindrical roller bearings based on nonlinear dynamic model with lubrication and cage whirling","authors":"Xinzhuo Zhang, Ruixuan Gao, Yongsheng Zhu, Qiang Tang, Ke Yan, Jun Hong","doi":"10.1016/j.ijnonlinmec.2024.104887","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic characteristics of the cages of cylindrical roller bearings (CRBs) significantly impact the service life of the bearings. This paper considers the lubrication between the roller and cage and the effect of cage whirling and establishes an accurate CRBs nonlinear dynamic model. On this basis, the correlation between the stability of the cage centroid trajectory, cage sliding characteristics, and bearing operating parameters is elaborated on. In addition, the influence of structural parameters, such as the number of rollers and pocket clearance, on the dynamic characteristics of the bearing system is also investigated. The results indicate that in the design stage of CRBs, it is essential to ensure a reasonable number of rollers and a smaller cage clearance ratio to reduce the slippage rate and enhance the stability of the bearing cage. Furthermore, during the usage stage of CRBs, changes in load or rotational speed operating parameters can lead to cage whirling. However, the stability of the cage whirling under the former condition is higher than that under the latter. Therefore, it is necessary to fully consider the reasonable rotational speed and load conditions to prevent premature damage to the cage.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104887"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074622400252X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic characteristics of the cages of cylindrical roller bearings (CRBs) significantly impact the service life of the bearings. This paper considers the lubrication between the roller and cage and the effect of cage whirling and establishes an accurate CRBs nonlinear dynamic model. On this basis, the correlation between the stability of the cage centroid trajectory, cage sliding characteristics, and bearing operating parameters is elaborated on. In addition, the influence of structural parameters, such as the number of rollers and pocket clearance, on the dynamic characteristics of the bearing system is also investigated. The results indicate that in the design stage of CRBs, it is essential to ensure a reasonable number of rollers and a smaller cage clearance ratio to reduce the slippage rate and enhance the stability of the bearing cage. Furthermore, during the usage stage of CRBs, changes in load or rotational speed operating parameters can lead to cage whirling. However, the stability of the cage whirling under the former condition is higher than that under the latter. Therefore, it is necessary to fully consider the reasonable rotational speed and load conditions to prevent premature damage to the cage.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.