Analytical study of the elastoplastic buckling of conical shells under external pressure

IF 2.8 3区 工程技术 Q2 MECHANICS International Journal of Non-Linear Mechanics Pub Date : 2025-03-07 DOI:10.1016/j.ijnonlinmec.2025.105069
Gwladys Belone , Van Dong Do , Philippe Le Grognec , Philippe Rohart , Samir Assaf
{"title":"Analytical study of the elastoplastic buckling of conical shells under external pressure","authors":"Gwladys Belone ,&nbsp;Van Dong Do ,&nbsp;Philippe Le Grognec ,&nbsp;Philippe Rohart ,&nbsp;Samir Assaf","doi":"10.1016/j.ijnonlinmec.2025.105069","DOIUrl":null,"url":null,"abstract":"<div><div>Pressure vessels are traditionally made up of cylindrical shells and hemispherical or ellipsoidal ends, but in some cases, conical sections are also present so as to ensure the transition between cylindrical sections of different radii. The buckling phenomenon is one of the main failure mode of such pressure equipments, due to the thinness of the components and the compressive stresses commonly undergone throughout standard loads like external pressure, and thus an essential dimensioning factor. If the buckling behavior of cylindrical and spherical shells has been widely investigated in the literature, the specific case of conical shells has received much less attention, all the more so in plasticity. Therefore, the present paper aims to address the problem of elastoplastic buckling of a conical shell under external pressure in an analytical way. This study is based on the plastic bifurcation theory and relies on the simplest possible hypotheses in terms of kinematics, constitutive law and boundary conditions. However, in absence of closed-form expressions, approximate solutions for the critical pressure are sought, based on the choice of appropriate shape functions in the framework of the Rayleigh–Ritz method. Unlike the case of cylindrical or spherical shells under external pressure which display uniform pre-critical stress states, the stress field appears to be heterogeneous in the length direction of a conical shell, so that three scenarios may occur. A conical shell may buckle elastically, entirely in the plastic range, or in an intermediate situation where the shell is partially elastic and plastic at the critical time. The present analytical solution is validated against reference numerical results obtained through finite element computations, considering a wide range of geometric and material parameters so as to cover all three scenarios.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"174 ","pages":"Article 105069"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225000575","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pressure vessels are traditionally made up of cylindrical shells and hemispherical or ellipsoidal ends, but in some cases, conical sections are also present so as to ensure the transition between cylindrical sections of different radii. The buckling phenomenon is one of the main failure mode of such pressure equipments, due to the thinness of the components and the compressive stresses commonly undergone throughout standard loads like external pressure, and thus an essential dimensioning factor. If the buckling behavior of cylindrical and spherical shells has been widely investigated in the literature, the specific case of conical shells has received much less attention, all the more so in plasticity. Therefore, the present paper aims to address the problem of elastoplastic buckling of a conical shell under external pressure in an analytical way. This study is based on the plastic bifurcation theory and relies on the simplest possible hypotheses in terms of kinematics, constitutive law and boundary conditions. However, in absence of closed-form expressions, approximate solutions for the critical pressure are sought, based on the choice of appropriate shape functions in the framework of the Rayleigh–Ritz method. Unlike the case of cylindrical or spherical shells under external pressure which display uniform pre-critical stress states, the stress field appears to be heterogeneous in the length direction of a conical shell, so that three scenarios may occur. A conical shell may buckle elastically, entirely in the plastic range, or in an intermediate situation where the shell is partially elastic and plastic at the critical time. The present analytical solution is validated against reference numerical results obtained through finite element computations, considering a wide range of geometric and material parameters so as to cover all three scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
期刊最新文献
Extended invariant cones as Nonlinear Normal Modes of inhomogeneous piecewise linear systems Responses of any arbitrary initially stressed reference and the stress-free reference An improved constitutive model for the rate-dependent mechanical behaviour of rubbery materials Analytical study of the elastoplastic buckling of conical shells under external pressure Unveiling the dynamics of particle-reinforced electro-magneto-active circular membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1