Comprehensive and open model structure for the design of future energy systems with sector coupling

{"title":"Comprehensive and open model structure for the design of future energy systems with sector coupling","authors":"","doi":"10.1016/j.rset.2024.100094","DOIUrl":null,"url":null,"abstract":"<div><p>Energy system modeling supports the identification of the optimal technology mix to achieve decarbonization targets across multiple sectors. Especially when sector coupling is considered for future technology landscapes, the large solution space leads to a complex optimization problem in terms of computational feasibility and data requirements. The authors identify a research gap in developing an open-source model structure with consideration of the relevant future technologies of power, heat, other conversions, transport, and industry defined with a new level of detail in a sector-coupled energy world and in including detailed insights into the accompanying definition process. A strong focus is set on the transparency and reproducibility of the provided open-source structure and its flexible and consistent application to different framework families to foster the ease of applicability of this work. The paper first gives a detailed description of the model base, including an overview of the model frame definition process, the core adjustments to model sector coupling appropriately, and the measures to make the resulting problem computationally feasible. The core result of this work is the presentation of a detailed model structure to model sector coupling for a German energy system, yielding approximately 2000 processes that characterize the heterogeneous and technology-open landscape of existing and possible future technologies across relevant energy sectors. This supports energy system modelers in understanding and reproducing energy system models based on open-source data and thereby tries to accelerate the research on sector coupling and its role in the energy transition.</p></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667095X24000187/pdfft?md5=bb6b54f07c499f749d92b7f9e52a699d&pid=1-s2.0-S2667095X24000187-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X24000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Energy system modeling supports the identification of the optimal technology mix to achieve decarbonization targets across multiple sectors. Especially when sector coupling is considered for future technology landscapes, the large solution space leads to a complex optimization problem in terms of computational feasibility and data requirements. The authors identify a research gap in developing an open-source model structure with consideration of the relevant future technologies of power, heat, other conversions, transport, and industry defined with a new level of detail in a sector-coupled energy world and in including detailed insights into the accompanying definition process. A strong focus is set on the transparency and reproducibility of the provided open-source structure and its flexible and consistent application to different framework families to foster the ease of applicability of this work. The paper first gives a detailed description of the model base, including an overview of the model frame definition process, the core adjustments to model sector coupling appropriately, and the measures to make the resulting problem computationally feasible. The core result of this work is the presentation of a detailed model structure to model sector coupling for a German energy system, yielding approximately 2000 processes that characterize the heterogeneous and technology-open landscape of existing and possible future technologies across relevant energy sectors. This supports energy system modelers in understanding and reproducing energy system models based on open-source data and thereby tries to accelerate the research on sector coupling and its role in the energy transition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于设计具有部门耦合功能的未来能源系统的全面、开放的模型结构
能源系统建模有助于确定最佳技术组合,以实现多个部门的去碳化目标。特别是在考虑未来技术景观的部门耦合时,庞大的求解空间会导致计算可行性和数据要求方面的复杂优化问题。作者指出了在开发开源模型结构方面存在的研究空白,该模型结构考虑了未来电力、热力、其他转换、交通和工业等相关技术,在部门耦合能源世界中定义了新的细节,并对相应的定义过程进行了详细的深入分析。本文着重强调了所提供开源结构的透明度和可复制性,以及对不同框架系列的灵活和一致应用,以提高这项工作的易用性。本文首先对模型基础进行了详细描述,包括模型框架定义过程概述、对模型部门耦合进行适当调整的核心内容,以及使由此产生的问题在计算上可行的措施。这项工作的核心成果是提出了一个详细的模型结构,为德国能源系统的部门耦合建模,产生了约 2000 个过程,描述了相关能源部门现有和未来可能的技术的异质性和技术开放性。这有助于能源系统建模人员理解和再现基于开源数据的能源系统模型,从而努力加快对部门耦合及其在能源转型中的作用的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Scenarios for wind capacity deployment in Colombia by 2050: A perspective from system dynamics modeling Optimizing the use of limited amounts of hydrogen in existing combined heat and power plants Comprehensive and open model structure for the design of future energy systems with sector coupling Strengthening energy system resilience planning under uncertainty by minimizing regret The political economy of mini-grid electricity development and innovation in Kenya
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1