Bingpeng Hou , Jingjin Chen , Xin-Rui Cao , Xiaowen Shi , Shun-Qing Wu , Zi-Zhong Zhu
{"title":"Structural, electronic and diffusion properties of new two-dimensional materials: Li3CrMnX4 (X = S, O)","authors":"Bingpeng Hou , Jingjin Chen , Xin-Rui Cao , Xiaowen Shi , Shun-Qing Wu , Zi-Zhong Zhu","doi":"10.1016/j.ssi.2024.116675","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring high energy density electrode material and superionic conductors are of great significance in fields such as lithium-ion batteries (LIBs). Here, two new 2D materials, i.e., Li<sub>3</sub>CrMnS<sub>4</sub> and Li<sub>3</sub>CrMnO<sub>4</sub>, are proposed. Theoretical capacities of Li<sub>3</sub>CrMnS<sub>4</sub> and Li<sub>3</sub>CrMnO<sub>4</sub> are 314 mAh/g and 419 mAh/g, respectively. The calculations of phonon spectra show that both the materials are dynamical stable. The first-principles molecular dynamics simulations also show that they have thermodynamic stability at room temperature. The calculations on the electronic structures suggest that both materials are semiconductors, and their band gaps are 1.33 eV and 1.67 eV, respectively. The ground states of Li<sub>3</sub>CrMnS<sub>4</sub> and Li<sub>3</sub>CrMnO<sub>4</sub> are ferromagnetic and antiferromagnetic, respectively. In order to explore the possibility of these two materials as superionic conductors, the diffusion properties of Li ions are emphasized. The diffusion coefficients of Li ions in both materials reach 10<sup>−5</sup> cm<sup>2</sup>s<sup>−1</sup>, for the Li<sub>3</sub>CrMnS<sub>4</sub>, two Li-ions concerted migration has the highest diffusion coefficient. The minimum migration energy barriers of Li ions in Li<sub>3</sub>CrMnS<sub>4</sub> and Li<sub>3</sub>CrMnO<sub>4</sub> are 0.16 eV and 0.12 eV, respectively. The Li ions migration is dominated by the Li ions between the octahedral layers.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116675"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002236","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring high energy density electrode material and superionic conductors are of great significance in fields such as lithium-ion batteries (LIBs). Here, two new 2D materials, i.e., Li3CrMnS4 and Li3CrMnO4, are proposed. Theoretical capacities of Li3CrMnS4 and Li3CrMnO4 are 314 mAh/g and 419 mAh/g, respectively. The calculations of phonon spectra show that both the materials are dynamical stable. The first-principles molecular dynamics simulations also show that they have thermodynamic stability at room temperature. The calculations on the electronic structures suggest that both materials are semiconductors, and their band gaps are 1.33 eV and 1.67 eV, respectively. The ground states of Li3CrMnS4 and Li3CrMnO4 are ferromagnetic and antiferromagnetic, respectively. In order to explore the possibility of these two materials as superionic conductors, the diffusion properties of Li ions are emphasized. The diffusion coefficients of Li ions in both materials reach 10−5 cm2s−1, for the Li3CrMnS4, two Li-ions concerted migration has the highest diffusion coefficient. The minimum migration energy barriers of Li ions in Li3CrMnS4 and Li3CrMnO4 are 0.16 eV and 0.12 eV, respectively. The Li ions migration is dominated by the Li ions between the octahedral layers.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.